如图1,四边形 内接于 , 是 的直径,过点 的切线与 的延长线相交于点 .且
(1)求证: ;
(2)过图1中的点 作 ,垂足为 (如图 ,当 , 时,求 的半径.
如图1,矩形 的顶点 , 的坐标分别为 , ,直线 交 于点 , ,抛物线 过 , 两点.
(1)求点 的坐标和抛物线 的表达式;
(2)点 是抛物线 对称轴上一动点,当 时,求所有符合条件的点 的坐标;
(3)如图2,点 ,连接 ,将抛物线 的图象向下平移 个单位得到抛物线 .
①设点 平移后的对应点为点 ,当点 恰好在直线 上时,求 的值;
②当 时,若抛物线 与直线 有两个交点,求 的取值范围.
某学习小组的学生在学习中遇到了下面的问题:
如图1,在
和
中,
,
,点
,
,
在同一条直线上,连接
,点
是
的中点,连接
,
,试判断
的形状并说明理由.
问题探究:
(1)小婷同学提出解题思路:先探究 的两条边是否相等,如 ,以下是她的证明过程
证明:延长线段 交 的延长线于点 . 是 的中点, . , . |
. 又 , . . . |
请根据以上证明过程,解答下列两个问题:
①在图1中作出证明中所描述的辅助线;
②在证明的括号中填写理由(请在 , , , 中选择).
(2)在(1)的探究结论的基础上,请你帮助小婷求出 的度数,并判断 的形状.
问题拓展:
(3)如图2,当 绕点 逆时针旋转某个角度时,连接 ,延长 交 的延长线于点 ,其他条件不变,判断 的形状并给出证明.
如图1, 的边 在 轴的正半轴上, , ,反比例函数 的图象经过的 .
(1)求点 的坐标和反比例函数的关系式;
(2)如图2,直线 分别与 轴、 轴的正半轴交于 , 两点,若点 和点 关于直线 成轴对称,求线段 的长;
(3)如图3,将线段 延长交 的图象于点 ,过 , 的直线分别交 轴、 轴于 , 两点,请探究线段 与 的数量关系,并说明理由.
中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:
本数(本 |
频数(人数) |
频率 |
5 |
|
0.2 |
6 |
18 |
0.36 |
7 |
14 |
|
8 |
8 |
0.16 |
合计 |
|
1 |
(1)统计表中的 , , ;
(2)请将条形统计图补充完整;
(3)求所有被调查学生课外阅读的平均本数;
(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.
某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?