游客
题文

为确保广大居民家庭基本用水需求的同时鼓励家庭节约用水,对居民家庭每户每月用水量采用分档递增收费的方式,每户每月用水量不超过基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费.为对基本用水量进行决策,随机抽查2000户居民家庭每户每月用水量的数据,整理绘制出下面的统计表:

用户每月用水量 ( m 3 )

32及其以下

33

34

35

36

37

38

39

40

41

42

43及其以上

户数(户)

200

160

180

220

240

210

190

100

170

120

100

110

(1)为确保 70 % 的居民家庭每户每月的基本用水量需求,那么每户每月的基本用水量最低应确定为多少立方米?

(2)若将(1)中确定的基本用水量及其以内的部分按每立方米1.8元交费,超过基本用水量的部分按每立方米2.5元交费.设 x 表示每户每月用水量(单位: m 3 ), y 表示每户每月应交水费(单位:元),求 y x 的函数关系式;

(3)某户家庭每月交水费是80.9元,请按以上收费方式计算该家庭当月用水量是多少立方米?

科目 数学   题型 计算题   难度 中等
知识点: 一次函数的应用
登录免费查看答案和解析
相关试题

已知点 P ( x 0 y 0 ) 和直线 y = kx + b ,则点 P 到直线 y = kx + b 的距离证明可用公式 d = | k x 0 - y 0 + b | 1 + k 2 计算.

例如:求点 P ( - 1 , 2 ) 到直线 y = 3 x + 7 的距离.

解:因为直线 y = 3 x + 7 ,其中 k = 3 b = 7

所以点 P ( - 1 , 2 ) 到直线 y = 3 x + 7 的距离为: d = | k x 0 - y 0 + b | 1 + k 2 = | 3 × ( - 1 ) - 2 + 7 | 1 + 3 2 = 2 10 = 10 5

根据以上材料,解答下列问题:

(1)求点 P ( 1 , - 1 ) 到直线 y = x - 1 的距离;

(2)已知 Q 的圆心 Q 坐标为 ( 0 , 5 ) ,半径 r 为2,判断 Q 与直线 y = 3 x + 9 的位置关系并说明理由;

(3)已知直线 y = - 2 x + 4 y = - 2 x - 6 平行,求这两条直线之间的距离.

某地2014年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.

(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?

(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?

某地的一座人行天桥如图所示,天桥高为6米,坡面 BC 的坡度为 1 : 1 ,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为 1 : 3

(1)求新坡面的坡角 a

(2)原天桥底部正前方8米处( PB 的长)的文化墙 PM 是否需要拆除?请说明理由.

2016年6月19日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.

请根据图1、图2解答下列问题:

(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;

(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.

先化简,再求值: a ( a - 2 b ) + ( a + b ) 2 ,其中 a = - 1 b = 2

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号