如图1,抛物线 与 轴交于点 , ,与 轴交于点 ,顶点为 ,直线 交 轴于点 .
(1)求抛物线的解析式.
(2)如图2,将 沿直线 平移得到 .
①当点 落在抛物线上时,求点 的坐标.
②在 移动过程中,存在点 使 为直角三角形,请直接写出所有符合条件的点 的坐标.
如图,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37º,求∠D的度数
解不等式:5x–12≤2(4x-3)
已知抛物线经过点A(
,0)、B(m,0)(m>0),且与y轴交于点C.
⑴求a、b的值(用含m的式子表示)
⑵如图所示,⊙M过A、B、C三点,求阴影部分扇形的面积S(用含m的式子表示);
⑶在x轴上方,若抛物线上存在点P,
使得以A、B、P为顶点的三角形与相似,求m的值.
已知△ABC ,D、E、F分别是AB、AC、BC上的点。且DE∥BC, EF∥AB.
求证:
已知如图,AB和DE是直立在地面上的两根立柱,AB=10m,某一时刻AB在太阳光下的投影BC=6m.21世纪教育网
(1)请你在图中画出此时DE在阳光下的投影.
(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为3m,计算DE的长.