游客
题文

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx ( a b 为常数, a 0 ) 经过两点 A ( 2 , 4 ) B ( 4 , 4 ) ,交 x 轴正半轴于点 C

(1)求抛物线 y = a x 2 + bx 的解析式.

(2)过点 B BD 垂直于 x 轴,垂足为点 D ,连接 AB AD ,将 ΔABD AD 为轴翻折,点 B 的对应点为 E ,直线 DE y 轴于点 P ,请判断点 E 是否在抛物线上,并说明理由.

(3)在(2)的条件下,点 Q 是线段 OC (不包含端点)上一动点,过点 Q 垂直于 x 轴的直线分别交直线 DP 及抛物线于点 M N ,连接 PN ,请探究:是否存在点 Q ,使 ΔPMN 是以 PM 为腰的等腰三角形?若存在,请求出点 Q 的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元.商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.
(1)求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)
(2)商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?

如图1,△ABC中,∠ACB=90°,E是AB的中点, ED平分∠BEC交BC于点D,F在DE延长线上且AF=AE.

(1)求证:四边形ACEF是平行四边形;
(2)如图2若四边形ACEF是菱形,连接FC,BF,FC与AB交于点H,连接DH,在不添加任何辅助线的情况下,请直接写出图2中的所有等边三角形

在平面直角坐标系中,点A的坐标是(0,3),点B的坐标是
(1)将△AOB绕点A逆时针旋转90°得到△AEF,点O,B对应点分别是E,F,请在图中画出△AEF;

(2)将线段AF绕点O旋转180°得到线段MN,点A、F对应点分别是M、N,请画出线段MN,并连结NF,直接写出线段NF的长

先化简,再求代数式的值,其中x=×+1

解方程:
(1)x(2x-5)=4x-10(2)2x2-x-1="0"

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号