如图1,抛物线 y = - 3 5 [ ( x - 2 ) 2 + n ] 与 x 轴交于点 A ( m - 2 , 0 ) 和 B ( 2 m + 3 , 0 ) (点 A 在点 B 的左侧),与 y 轴交于点 C ,连接 BC .
(1)求 m 、 n 的值;
(2)如图2,点 N 为抛物线上的一动点,且位于直线 BC 上方,连接 CN 、 BN .求 ΔNBC 面积的最大值;
(3)如图3,点 M 、 P 分别为线段 BC 和线段 OB 上的动点,连接 PM 、 PC ,是否存在这样的点 P ,使 ΔPCM 为等腰三角形, ΔPMB 为直角三角形同时成立?若存在,求出点 P 的坐标;若不存在,请说明理由.
(1)已知(x+1)2﹣1=24,求x的值; (2)已知125x3+343=0,求x的值.
计算:
(本小题5分)解方程:
(本小题6分)先化简,再求值:x-2(x-)+(-+)的值, 其中x=-2,y=-1
(1)(本小题5分)计算:1+32÷-×5 (2)(本小题5分)已知A=-3,B=-3x-1,求A-2B的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号