如图1,已知平行四边形 顶点 的坐标为 ,点 在 轴上,且 轴,过 , , 三点的抛物线 的顶点坐标为 ,点 是线段 上一动点,直线 交 于点 .
(1)求抛物线的表达式;
(2)设四边形 的面积为 ,请求出 与 的函数关系式,并写出自变量 的取值范围;
(3)如图2,过点 作 轴,垂足为 ,交直线 于 ,过点 作 轴,垂足为 ,连接 ,直线 分别交 轴, 轴于点 , ,试求线段 的最小值,并直接写出此时 的值.
已知直线l1与l2都经过点P,如果l1∥l3,l2∥l3,那么l1与l2重合,为什么?
如图所示,直线MN与PQ相交于点O,R为MN、PQ外一点,过点R画直线AB∥PQ,直线CD∥MN.
如图所示,小明家在A处,他要去在同一条路上的B,C,D,E四家商店中的某一家商店买东西,则他至少要走多少米才可以买到东西?
如图所示,在长方形的台球桌桌面上,选择适当的方法击打白球,可以使白球经过两次反弹后将黑球直接撞入中洞,此时∠1=∠2,∠3=∠4,且∠2+∠3=90°,∠4+∠5=90°.如果黑球与洞口连线和台球桌面边缘的夹角为∠5=40°,那么∠1应等于多少度才能保证黑球进入中洞?
取一张正方形纸片ABCD,如图
(1)折叠∠A,设顶点A落在点A′的位置,折痕为EF;如图(2)折叠∠B,使EB沿EA′的方向落下,折痕为EG.试判断∠FEG的度数是否是定值,并说明理由.