夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务.为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.
(1)设第 天生产空调 台,直接写出 与 之间的函数解析式,并写出自变量 的取值范围.
(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第 天的利润为 元,试求 与 之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.
请将下列证明过程补充完整:
已知:如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,.
求证:.
证明:因为(已知),
又因为(),
所以(等量代换).
所以∥(同位角相等,两直线平行),
所以().
又因为(已知),
所以∥().
所以(两直线平行,内错角相等).
所以().
解不等式组:
解不等式,并求它的非负整数解.
(6分)解方程组
已知一次函数的图像经过点M(-1,3)、N(1,5)。直线MN与坐标轴相交于点A、B两点.
(1)求一次函数的解析式.
(2)如图,点C与点B关于x轴对称,点D在线段OA上,连结BD,把线段BD顺时针方向旋转90°得到线段DE,作直线CE交x轴于点F,求的值.
(3)如图,点P是直线AB上一动点,以OP为边作正方形OPNM,连接ON、PM交于点Q,连BQ,当点P在直线AB上运动时,的值是否会发生变化,若不变,请求出其值;若变化,请说明理由.