游客
题文

某中学九年级数学兴趣小组想测量建筑物 AB 的高度.他们在 C 处仰望建筑物顶端,测得仰角为 48 ° ,再往建筑物的方向前进6米到达 D 处,测得仰角为 64 ° ,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)

(参考数据: sin 48 ° 7 10 tan 48 ° 11 10 sin 64 ° 9 10 tan 64 ° 2 )

科目 数学   题型 解答题   难度 中等
知识点: 解直角三角形的应用-仰角俯角问题
登录免费查看答案和解析
相关试题

如图,四边形 ABCD 是矩形,点 A 在第四象限 y 1 = 2 x 的图象上,点 B 在第一象限 y 2 = k x 的图象上, AB x 轴于点 E ,点 C 与点 D y 轴上, AD = 3 2 S 矩形OCBE = 3 2 S 矩形ODAE

(1)求点 B 的坐标.

(2)若点 P x 轴上, S ΔBPE = 3 ,求直线 BP 的解析式.

如图,池塘边一棵垂直于水面 BM 的笔直大树 AB 在点 C 处折断, AC 部分倒下,点 A 与水面上的点 E 重合,部分沉入水中后,点 A 与水中的点 F 重合, CF 交水面于点 D DF = 2 m CEB = 30 ° CDB = 45 ° ,求 CB 部分的高度.(精确到 0 . 1 m .参考数据: 2 1 . 41 3 1 . 73 )

随着经济的快速发展,环境问题越来越受到人们的关注.某校学生会为了了解垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两幅统计图.

(1)求:本次被调查的学生有多少名?补全条形统计图.

(2)估计该校1200名学生中“非常了解”与“了解”的人数和是多少.

(3)被调查的“非常了解”的学生中有2名男生,其余为女生,从中随机抽取2人在全校做垃圾分类知识交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.

如图1, ΔABC ( 1 2 AC < BC < AC ) 绕点 C 顺时针旋转得 ΔDEC ,射线 AB 交射线 DE 于点 F

(1) AFD BCE 的关系是  

(2)如图2,当旋转角为 60 ° 时,点 D ,点 B 与线段 AC 的中点 O 恰好在同一直线上,延长 DO 至点 G ,使 OG = OD ,连接 GC

AFD GCD 的关系是  ,请说明理由;

②如图3,连接 AE BE ,若 ACB = 45 ° CE = 4 ,求线段 AE 的长度.

如图, BE O 的直径,点 A 和点 D O 上的两点,连接 AE AD DE ,过点 A 作射线交 BE 的延长线于点 C ,使 EAC = EDA

(1)求证: AC O 的切线;

(2)若 CE = AE = 2 3 ,求阴影部分的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号