游客
题文

已知在菱形 ABCD 中, ABC = 60 ° ,对角线 AC BD 相交于点 O ,点 E 是线段 BD 上一动点(不与点 B D 重合),连接 AE ,以 AE 为边在 AE 的右侧作菱形 AEFG ,且 AEF = 60 °

(1)如图1,若点 F 落在线段 BD 上,请判断:线段 EF 与线段 DF 的数量关系是    

(2)如图2,若点 F 不在线段 BD 上,其它条件不变,(1)中的结论是否仍然成立?请给出判断并予以证明;

(3)若点 C E G 三点在同一直线上,其它条件不变,请直接写出线段 BE 与线段 BD 的数量关系.

科目 数学   题型 解答题   难度 中等
知识点: 解直角三角形 菱形的性质 全等三角形的判定与性质 等腰三角形的判定与性质 等边三角形的判定与性质
登录免费查看答案和解析
相关试题

:某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从以下4个方案中选择合理的方案来确定每个演讲者的最后得分。
方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.
方案3:所有评委所给分的中位数.
方案4:所有评委所给分的众数.




为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:


(1)分别按上述4个方案计算这个同学演讲的最后得分;
(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.

十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:

(1)根据上面多面体模型,完成表格中的空格:

多面体
顶点数(V)
面数(F)
棱数(E)
四面体
4
4
6
长方体
8
6
12
正八面体
6
8
12
正十二面体



(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是
(3)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是
(4)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,x+y=

(本题6分)点O到△ABC的两边AB、AC所在直线的距离相等,且OB=OC

(1)如图1,若点O在边BC上,求证:AB=AC
(2)如图2,若点O在△ABC的内部,求证:AB=AC
(3)若点O在△ABC的外部,AB=AC成立吗?请画图表示.

某住宅小区在住宅建设时留下一块1798平方米的空地,准备建一个矩形的露天游泳池,设计如图所示,游泳池的长是宽的2倍,在游泳池的前侧留一块5米宽的空地,其它三侧各保留2米宽的道路及1米宽的绿化带
请你计算出游泳池的长和宽
若游泳池深3米,现要把池底和池壁(共5个面)都贴上瓷砖,请你计算要贴瓷砖的总面积

阅读下面材料:解答问题
为解方程 (x2-1)2-5 (x2-1)+4=0,我们可以将(x2-1)看作一个整体,然后设 x2-1=y,那么原方程可化为 y2-5y+4=0,解得y1=1,y2=4.
当y=1时,x2-1=1,∴x2=2,∴x=±;当y=4时,x2-1=4,∴x2=5,∴x=±,
故原方程的解为 x1=,x2=-,x3=,x4=-.
上述解题方法叫做换元法;
请利用换元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号