数学课上,张老师出示了问题:如图1, , 是四边形 的对角线,若 ,则线段 , , 三者之间有何等量关系?
经过思考,小明展示了一种正确的思路:如图2,延长 到 ,使 ,连接 ,证得 ,从而容易证明 是等边三角形,故 ,所以 .
小亮展示了另一种正确的思路:如图3,将 绕着点 逆时针旋转 ,使 与 重合,从而容易证明 是等边三角形,故 ,所以 .
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图4,如果把“ ”改为“ ”,其它条件不变,那么线段 , , 三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.
(2)小华提出:如图5,如果把“ ”改为“ ”,其它条件不变,那么线段 , , 三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.
如图,已知等边,
,E是BC延长线上的一点,且
。
试说明
为等腰三角形;
DB与DE是否相等,请说明理由。
长方形纸片EFGH可以绕着长方形纸片ABCD上的点O自由的旋转,当边EH与AB相交时,形成了∠1,∠2,求∠1+∠2的度数。(长方形的每个角都是直角且对边平行)
如图,已知:A、C、F、D四点在一条直线上,AB∥DE, AB=DE,AC=FD,
请问线段BC与EF有怎样的关系,并说明理由。
如图,已知在△ABC中,AB=AC,∠DBC=∠DCB,则有以下结论:
△ABD≌△ACD;
为什么AD平分∠BAC,试说明理由。
如图,AD是等腰三角形ABC的底边BC上的中线,DE∥AB,交AC于点E,
判断△ADE是不是等腰三角形,并说明理由。