游客
题文

数学课上,张老师出示了问题:如图1, AC BD 是四边形 ABCD 的对角线,若 ACB = ACD = ABD = ADB = 60 ° ,则线段 BC CD AC 三者之间有何等量关系?

经过思考,小明展示了一种正确的思路:如图2,延长 CB E ,使 BE = CD ,连接 AE ,证得 ΔABE ΔADC ,从而容易证明 ΔACE 是等边三角形,故 AC = CE ,所以 AC = BC + CD

小亮展示了另一种正确的思路:如图3,将 ΔABC 绕着点 A 逆时针旋转 60 ° ,使 AB AD 重合,从而容易证明 ΔACF 是等边三角形,故 AC = CF ,所以 AC = BC + CD

在此基础上,同学们作了进一步的研究:

(1)小颖提出:如图4,如果把“ ACB = ACD = ABD = ADB = 60 ° ”改为“ ACB = ACD = ABD = ADB = 45 ° ”,其它条件不变,那么线段 BC CD AC 三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.

(2)小华提出:如图5,如果把“ ACB = ACD = ABD = ADB = 60 ° ”改为“ ACB = ACD = ABD = ADB = α ”,其它条件不变,那么线段 BC CD AC 三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.

科目 数学   题型 解答题   难度 中等
知识点: 几何变换综合题 全等三角形的判定与性质 等腰三角形的判定与性质
登录免费查看答案和解析
相关试题

如图,已知二次函数的图象与坐标轴交于点A(-1, 0)和点

B(0,-5).
(1)求该二次函数的解析式;
(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标.

先阅读材料,再填空解答:
学校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按四个等级进行统计,并将统计结果绘制成如下的统计图,
请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)
(1)请把条形统计图补充完整;
(2)样本中D级的学生人数占全班学生人数的百分比是
(3)扇形统计图中B级所在的扇形的圆心角度数是
(4)若该校九年级有1000名学生,请你用此样本估计体育测试中A级和B级的学生人数约为人.

如图,二次函数)的图象与轴交于两点,与轴相交于点.连结两点的坐标分别为,且当时二次函数的函数值相等.
(1)求实数的值;
(2)若点同时从点出发,均以每秒1个单位长度的速度分别沿边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为秒时,连结,将沿翻折,点恰好落在边上的处,求的值及点的坐标;
(3)在(2)的条件下,二次函数图象的对称轴上是否存在点,使得以为项点的三角形与相似?如果存在,请求出点的坐标;如果不存在,请说明理由.

中,边上一点,以为直径的与边相切于点,连结并延长,与的延长线交于点
(1)求证:
(2)若,求的面积.

反比例函数的图象如图所示,是该图象上的两点.
(1)比较的大小;
(2)求的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号