如图,菱形 中,对角线 , 相交于点 , , ,动点 从点 出发,沿线段 以 的速度向点 运动,同时动点 从点 出发,沿线段 以 的速度向点 运动,当其中一个动点停止运动时另一个动点也随之停止.设运动时间为 ,以点 为圆心, 长为半径的 与射线 ,线段 分别交于点 , ,连接 .
(1)求 的长(用含有 的代数式表示),并求出 的取值范围;
(2)当 为何值时,线段 与 相切?
(3)若 与线段 只有一个公共点,求 的取值范围.
在△ABC中,AB=AC,AE是BC边上的高,∠B的平分线与AE相交于点D,
求证:点D在∠ACB的平分线上.
如图,AD∥BC,BD平分∠ABC.求证:AB=AD.
如图,直线l是线段AB的垂直平分线,若有一点C在直线l上,则由垂直平分线的性质可知:CA=CB;现有一点P在直线l的右侧,则PA、PB有何大小关系?请写出你的结论,并说明理由.
如图,直线l是线段AB的中垂线,P点在直线l的右侧,则点P到A、B的距离有何关系?请写出你的结论,并说明理由.
如图,已知DE是△ABC的边AB的垂直平分线交AB于D,BC于E,AE恰好是∠BAC的平分线,若∠B=30°.
(1)求∠C的度数;
(2)你发现了什么?