如图,已知抛物线 与 轴分别交于原点 和点 ,与对称轴 交于点 .矩形 的边 在 轴正半轴上,且 ,边 , 与抛物线分别交于点 , .当矩形 沿 轴正方向平移,点 , 位于对称轴 的同侧时,连接 ,此时,四边形 的面积记为 ;点 , 位于对称轴 的两侧时,连接 , ,此时五边形 的面积记为 .将点 与点 重合的位置作为矩形 平移的起点,设矩形 平移的长度为 .
(1)求出这条抛物线的表达式;
(2)当 时,求 的值;
(3)当矩形 沿着 轴的正方向平移时,求 关于 的函数表达式,并求出 为何值时, 有最大值,最大值是多少?
如图,点A、B、C、D在同一条直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.
先化简,再求值:(x+1)2+x(1-x),其中x=-2.
如图,已知抛物线y=x-ax+a
-4a-4与x轴相交于点A和点B,与y轴相交于点D(0,8),直线DC平行于x轴,交抛物线于另一点C,动点P以每秒2个单位长度的速度从C点出发,沿C→D运动,同时,点Q以每秒1个单位长度的速度从点A出发,沿A→B运动,连接PQ、CB,设点P运动的时间为t秒.
(1)求a的值;(2)当四边形ODPQ为矩形时,求这个矩形的面积;(3)当四边形PQBC的面积等于14时,求t的值.(4)当t为何值时,△PBQ是等腰三角形?(直接写出答案)
如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A, AD与 BC交于点E,F在DA的延长线上,且AF=AE. (1)求证:BF是⊙O的切线; (2)若AD=4,,求BC的长.
某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:.
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)