如图,在平面直角坐标系中, , , ,点 的坐标为 .抛物线 经过 、 两点.
(1)求抛物线的解析式;
(2)点 是直线 上方抛物线上的一点,过点 作 垂直 轴于点 ,交线段 于点 ,使 .
①求点 的坐标;
②在直线 上是否存在点 ,使 为直角三角形?若存在,求出符合条件的所有点 的坐标;若不存在,请说明理由.
已知,如图,中,
的平分线与
的平分线交于
点,若
,求
的度数.
已知,如图,点是
中
边上的一点,点
是
边延长线上一点,说明:
.
用黑、白两种颜色的正六边形地砖按如图3所示的规律,拼成若干个图案.
(1)第四个图案中有白色地砖_______块;
(2)第个图案中有白色地砖_______块.
如图所示的地面全是用正三角形的材料铺设而成的.
(1)用这种形状的材料为什么能铺成平整、无隙的地面?
(2)像上面那样铺地砖,能否全用正十边形的材料?为什么?
(3)你能不能另外想出一种用多边形 (不一定是正多边形)的材料铺地面的方案?把你想到的方案画成草图.
请你设计在每一个顶点处由四个正多边形拼成的平面图案, 你能设计出多少种不同的方案?