问题提出:用若干相同的一个单位长度的细直木棒,按照如图1方式搭建一个长方体框架,探究所用木棒条数的规律.
问题探究:
我们先从简单的问题开始探究,从中找出解决问题的方法.
探究一
用若干木棒来搭建横长是 ,纵长是 的矩形框架 、 是正整数),需要木棒的条数.
如图①,当 , 时,横放木棒为 条,纵放木棒为 条,共需4条;
如图②,当 , 时,横放木棒为 条,纵放木棒为 条,共需7条;
如图③,当 , 时,横放木棒为 条,纵放木棒为 条,共需12条;
如图④,当 , 时,横放木棒为 条,纵放木棒为 条,共需10条;
如图⑤,当 , 时,横放木棒为 条,纵放木棒为 条,共需17条.
问题(一 :当 , 时,共需木棒 条.
问题(二 :当矩形框架横长是 ,纵长是 时,横放的木棒为 条,
纵放的木棒为 条.
探究二
用若干木棒来搭建横长是 ,纵长是 ,高是 的长方体框架 、 、 是正整数),需要木棒的条数.
如图⑥,当 , , 时,横放与纵放木棒之和为 条,竖放木棒为 条,共需46条;
如图⑦,当 , , 时,横放与纵放木棒之和为 条,竖放木棒为 条,共需75条;
如图⑧,当 , , 时,横放与纵放木棒之和为 条,竖放木棒为 条,共需104条.
问题(三 :当长方体框架的横长是 ,纵长是 ,高是 时,横放与纵放木棒条数之和为 条,竖放木棒条数为 条.
实际应用:现在按探究二的搭建方式搭建一个纵长是2、高是4的长方体框架,总共使用了170条木棒,则这个长方体框架的横长是 .
拓展应用:若按照如图2方式搭建一个底面边长是10,高是5的正三棱柱框架,需要木棒 条.
如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P、D分别在AO和BC上,PB=PD,DE⊥AC于点E.
(1)若PB平分∠ABO,求证:AP=CD;
(2)若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)
小明和小新同时上学,从家到学校的距离都是2km,他们走路的速度是6km/h,跑步的速度为10km/h,请你根据以上信息,设计一个可以用一元一次不等式解决的问题.并给出解决方案.
如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长(小于AB的长)为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D.
(1)求证:点D在AB的中垂线上;
(2)如果△ACD的面积为1,求△ADB的面积.
如图是一种儿童的游乐设施﹣儿童荡板.小明想验证这个荡板上方的四边形是否是平行四边形,现在手头只有一根足够长的绳子,请你帮助他设计一个验证方案,并说明理由.
如图是一次函数y=2x﹣5的图象,请根据给出的图象写出一个一元一次方程和一个一元一次不等式,并用图象求解所写出的方程和不等式.