首条贯通丝绸之路经济带的高铁线 宝兰客专进入全线拉通试验阶段.宝兰客专的通车对加快西北地区与“一带一路”沿线国家和地区的经贸合作、人文交流具有十分重要的意义.试运行期间,一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为 (小时),两车之间的距离为 (千米),图中的折线表示 与 之间的函数关系,根据图象进行以下探究:
(信息读取)
(1)西宁到西安两地相距 千米,两车出发后 小时相遇;
(2)普通列车到达终点共需 小时,普通列车的速度是 千米 小时.
(解决问题)
(3)求动车的速度;
(4)普通列车行驶 小时后,动车到达终点西宁,求此时普通列车还需行驶多少千米到达西安?
解不等式组
请结合题意,完成本题的解答.
(1)解不等式①,得 ,依据是: .
(2)解不等式③,得 .
(3)把不等式①、②和③的解集在数轴上表示出来.
(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集 .
计算 .
问题呈现:
如图1,点 、 、 、 分别在矩形 的边 、 、 、 上, ,求证: .( 表示面积)
实验探究:
某数学实验小组发现:若图1中 ,点 在 上移动时,上述结论会发生变化,分别过点 、 作 边的平行线,再分别过点 、 作 边的平行线,四条平行线分别相交于点 、 、 、 ,得到矩形 .
如图2,当 时,若将点 向点 靠近 ,经过探索,发现: .
如图3,当 时,若将点 向点 靠近 ,请探索 、 与 之间的数量关系,并说明理由.
迁移应用:
请直接应用“实验探究”中发现的结论解答下列问题:
(1)如图4,点 、 、 、 分别是面积为25的正方形 各边上的点,已知 , , , ,求 的长.
(2)如图5,在矩形 中, , ,点 、 分别在边 、 上, , ,点 、 分别是边 、 上的动点,且 ,连接 、 ,请直接写出四边形 面积的最大值.
如图,已知二次函数 的图象经过点 , ,且与 轴交于点 ,连接 、 、 .
(1)求此二次函数的关系式;
(2)判断 的形状;若 的外接圆记为 ,请直接写出圆心 的坐标;
(3)若将抛物线沿射线 方向平移,平移后点 、 、 的对应点分别记为点 、 、 ,△ 的外接圆记为 ,是否存在某个位置,使 经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.
如图,湿地景区岸边有三个观景台 、 、 .已知 米, 米, 点位于 点的南偏西 方向, 点位于 点的南偏东 方向.
(1)求 的面积;
(2)景区规划在线段 的中点 处修建一个湖心亭,并修建观景栈道 .试求 、 间的距离.(结果精确到0.1米)
(参考数据: , , , , , , .