如图,已知抛物线 与 轴的交点为 , ,且与 轴交于 点.
(1)求该抛物线的表达式;
(2)点 关于 轴的对称点为 , 是线段 上的一个动点(不与 、 重合), 轴, 轴,垂足分别为 、 ,当点 在什么位置时,矩形 的面积最大?说明理由.
(3)已知点 是直线 上的动点,点 为抛物线上的动点,当以 、 、 、 为顶点的四边形为平行四边形时,求出相应的点 和点 的坐标.
下面三图是由三个相同的小正方形拼成的图形,请你在A,B,C三图中再添加一个同样大小的小正方形,使所得的新图形分别为下列要求的图形,请画出示意图.
(1)是中心对称图形,但不是轴对称图形;
(2)是轴对称图形,但不是中心对称图形;
(3)既是中心对称图形,又是轴对称图形.
如图,在□ABCD中,对角线AC与BD相交于点E,AC⊥BC,AC=4,AB=5,求BD的长.
当,
时,求代数式
的值.
(1)计算:
(2)解方程:
如图,抛物线=-
+5
+
经过点C(4,0),与
轴交于另一点A,与
轴交于点B.
(1)求点A、B的坐标;
(2)P是轴上一点,△PAB是等腰三角形,试求P点坐标;
(3)若·Q的半径为1,圆心Q在抛物线上运动,当·Q与轴相切时,求·Q上的点到点B的最短距离.