某校为了解七年级学生的体重情况,随机抽取了七年级 名学生进行调查,将抽取学生的体重情况绘制如下不完整的频数分布表和扇形统计图.
组别 |
体重(千克) |
人数 |
|
|
10 |
|
|
|
|
|
40 |
|
|
20 |
|
|
10 |
请根据图表信息回答下列问题:
(1)填空:
① ,
② ,
③在扇形统计图中, 组所在扇形的圆心角的度数等于 度;
(2)若把每组中各个体重值用这组数据的中间值代替(例如: 组数据中间值为40千克),则被调查学生的平均体重是多少千克?
(3)如果该校七年级有1000名学生,请估算七年级体重低于47.5千克的学生大约有多少人?
如图,⊙O的直径AB垂直于弦CD,垂足P是OB的中点,CD=6 cm,求直径AB的长.
计算:(1);
(2).
(本题满分9分)
如图,以为顶点的抛物线与
轴交于点
.已知
、
两点坐标分别为(3,0)、(0,4).
(1)求抛物线的解析式;
(2)设是抛物线上的一点(
、
为正整数),且它位于对称轴的右侧.若以
、
、
、
为顶点的四边形四条边的长度是四个连续的正整数,求点
的坐标;
(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点,
是否总成立?请说明理由.
(本题满分9分)
刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,,
,
;图②中,
,
,
.图③是刘卫同学所做的一个实验:他将
的直角边
与
的斜边
重合在一起,并将
沿
方向移动.在移动过程中,
、
两点始终在
边上(移动开始时点
与点
重合).
(1)在沿
方向移动的过程中,刘卫同学发现:
、
两点间的距离逐渐▲.
(填“不变”、“变大”或“变小”)
(2)刘卫同学经过进一步地研究,编制了如下问题:
问题①:当移动至什么位置,即
的长为多少时,
、
的连线与
平行?
问题②:当移动至什么位置,即
的长为多少时,以线段
、
、
的长度为三边长的三角形是直角三角形?
问题③:在的移动过程中,是否存在某个位置,使得
?如果存在,
求出的长度;如果不存在,请说明理由.
请你分别完成上述三个问题的解答过程.
(本题满分9分)
如图,在等腰梯形中,
.
是
边的中点,以
为圆心,
长为半径作圆,交
边于点
.过
作
,垂足为
.已知
与
边相切,切点为
(1)求证:;
(2)求证:;
(3)若,求
的值.