如图,在 中,弦 与直径 垂直,垂足为 , 的延长线上有
一点 ,满足 .过点 作 ,交 的延长线于点 ,连接 交 于点 .
(1)求证: 是 的切线;
(2)如果 , ,求 的值;
(3)如果 ,求证: .
已知一次函数y=x+b的图象与x轴,y轴交于点A、B.
(1)若将此函数图象沿x轴向右平移2个单位后经过原点,则b=;
(2)若函数y1=x+b图象与一次函数y2=kx+4的图象关于y轴对称,求k、b的值;
(3)当b>0时,函数y1=x+b图象绕点B逆时针旋转n°(0°<n°<180°)后,对应的函数关系式为y=-x+b,求n的值.
如图,以O为圆心的弧度数为60 o,∠BOE=45o,DA⊥OB,EB⊥OB.
(1)求的值;
(2)若OE与交于点M,OC平分∠BOE,连接CM.说明:CM为⊙O的切线;
(3)在(2)的条件下,若BC=1,求tan∠BCO的值.
已知二次函数y=x2+2ax-2.
(1)求证:经过点(0,)且与x轴平行的直线与该函数的图象总有两个公共点;
(2)该函数和y=-x2+(a-3)x+
的图象都经过x轴上两个不同的点A、B,求a的值.
桌面上有5张背面相同的卡片,正面分别写着数字“1”、“2”、“3”、“4”、 “5”.将卡片背面朝上洗匀.
(1)小军从中任意抽取一张,抽到偶数的概率是;
(2)小红从中同时抽取两张.规定:抽到的两张卡片上的数字之和为奇数,则小军胜,否则小红胜.你认为这个游戏公平吗?请用树状图或表格说明你的理由.
南京市为了构建立体的道路网络,大力发展江北经济,决定修建一条六合到主城的轻轨铁路.为了使工程提前3个月完成,需将原定的工作效率提高10%.原计划完成这项工程需要多少个月?