将图中的 型(正方形)、 型(菱形)、 型(等腰直角三角形)纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.
(1)搅匀后从中摸出1个盒子,盒中的纸片既是轴对称图形又是中心对称图形的概率是 ;
(2)搅匀后先从中摸出1个盒子(不放回),再从余下的2个盒子中摸出1个盒子,把摸出的2个盒中的纸片长度相等的边拼在一起,求拼成的图形是轴对称图形的概率.(不重叠无缝隙拼接)
探索规律:观察下面由※组成的图案和算式,并解答问题
()试猜想
;
()试猜想
=;
()请用上述规律计算:
(请算出最后数值哦!)
某区教育局为了了解学生参加阳光体育活动的情况,对某校学生进行随机抽样调查,其中一个问题是“你平均每天参加阳光体育活动的时间是多少?”,共有4个选项:
A.![]() |
B.![]() ![]() |
C.![]() ![]() |
D.![]() |
图1、2是根据调查结果绘制的两幅不完整的统计图,
请你根据统计图提供的信息,解答以下问题:
(1)本次一共调查了多少名学生?
(2)在图中将选项B的部分补充完整;
(3)若该校有
名学生,你估计全校可能有多少名学
生平均每天参加体育活动的时间在小时以下.
解下列方程:
(1).
(2).
先化简,再求值:的值,其中
,
.
将1,2,3……100,这100个自然数任意分成50组,每组两个数,将其中一个数记为a,另一个数记为b,代入代数式中计算,求出其结果,50组都代入后可得50个值,求这50个值的和的最小值(请简要说明理由).