如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.
(1)请将所有可能出现的结果填入下表:
乙 积 甲 |
1 |
2 |
3 |
4 |
1 |
|
|
|
|
2 |
|
|
|
|
3 |
|
|
|
|
(2)积为9的概率为 ;积为偶数的概率为 ;
(3)从 这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为 .
(1)计算:﹣52﹣+(﹣
)﹣2+π0;
(2)先化简,再求值:a(2﹣a)﹣(1+a)(1﹣a),其中a=.
计算:
(1)()﹣1﹣
+(5﹣π)0
(2)(2x﹣1)2+(x﹣2)(x+2)﹣4x(x﹣)
已知抛物线y=3ax2+2bx+c
(1)若a=b=1,c=-1求该抛物线与x轴的交点坐标;
(2)若a=,c=2+b且抛物线在
区间上的最小值是-3,求b的值;
(3)若a+b+c=1,是否存在实数x,使得相应的y的值为1,请说明理由.
如图1,在矩形ABCD中,AB=4,AD=2,点P是边AB上的一个动点(不与点A、点B重合),点Q在边AD上,将△CBP和△QAP分别沿PC、PQ折叠,使B点与E点重合,A点与F点重合,且P、E、F三点共线.
(1)若点E平分线段PF,则此时AQ的长为多少?
(2)若线段CE与线段QF所在的平行直线之间的距离为2,则此时AP的长为多少?
(3)在“线段CE”、“线段QF”、“点A”这三者中,是否存在两个在同一条直线上的情况?若存在,求出此时AP的长;若不存在,请说明理由.
如图,在平行四边形ABCD中,E为BC边上的一点,且AE与DE分别平分和
(1)求证:;
(2)设以AD为直径的半圆交AB于F,连结DF交AE于G,已知CD=5,AE=8.
①求BC的长;
②求值.