游客
题文

如图,在 Rt Δ ABC 中, ACB = 90 ° CD 是斜边 AB 上的中线,以 CD 为直径的 O 分别交 AC BC 于点 M N ,过点 N NE AB ,垂足为 E

(1)若 O 的半径为 5 2 AC = 6 ,求 BN 的长;

(2)求证: NE O 相切.

科目 数学   题型 解答题   难度 中等
知识点: 圆周角定理 解直角三角形 切线的判定与性质 直角三角形斜边上的中线
登录免费查看答案和解析
相关试题

如图,点 M 是正方形 ABCD CD 上一点,连接 AM ,作 DE AM 于点 E BF AM 于点 F ,连接 BE

(1)求证: AE = BF

(2)已知 AF = 2 ,四边形 ABED 的面积为24,求 EBF 的正弦值.

如图,抛物线 y = a x 2 + bx + c ( a 0 ) x 轴交于点 A ( 4 , 0 ) B ( 2 , 0 ) ,与 y 轴交于点 C ( 0 , 4 ) ,线段 BC 的中垂线与对称轴 l 交于点 D ,与 x 轴交于点 F ,与 BC 交于点 E ,对称轴 l x 轴交于点 H

(1)求抛物线的函数表达式;

(2)求点 D 的坐标;

(3)点 P x 轴上一点, P 与直线 BC 相切于点 Q ,与直线 DE 相切于点 R .求点 P 的坐标;

(4)点 M x 轴上方抛物线上的点,在对称轴 l 上是否存在一点 N ,使得以点 D P M N 为顶点的四边形是平行四边形?若存在,则直接写出 N 点坐标;若不存在,请说明理由.

如图1,在四边形 BCDE 中, BC CD DE CD AB AE ,垂足分别为 C D A BC AC ,点 M N F 分别为 AB AE BE 的中点,连接 MN MF NF

(1)如图2,当 BC = 4 DE = 5 tan FMN = 1 时,求 AC AD 的值;

(2)若 tan FMN = 1 2 BC = 4 ,则可求出图中哪些线段的长?写出解答过程;

(3)连接 CM DN CF DF .试证明 ΔFMC ΔDNF 全等;

(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.

为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量 y (万件)与销售单价 x (元 ) 之间的函数关系如图所示.

(1)求该网店每月利润 w (万元)与销售单价 x (元 ) 之间的函数表达式;

(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?

为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图所示.

大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表

一周诗词诵背数量

3首

4首

5首

6首

7首

8首

人数

10

10

15

40

25

20

请根据调查的信息分析:

(1)活动启动之初学生“一周诗词诵背数量”的中位数为  

(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;

(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号