如图, 和 都是等边三角形,点 、 、 三点在同一直线上,连接 , , 交 于点 .
(1)若 ,求证: ;
(2)若 , .
①求 的值;②求 的长.
将长为20cm,宽为10cm的长方形白纸,按如图所示的方法粘贴起来,粘合部分的宽为2cm.设x张白纸粘合后的纸条总长度为ycm,
(1)求y与x之间的函数关系式,并画出函数图象,
(2)若x=20,求纸条的面积.
如图,在平行四边形ABCD中,E、F分别是CD,AB上的点,且DE=BF,求证:
(1)CE=AF;
(2)四边形AFCE是平行四边形.
如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.
(1)求证:四边形BMDN是菱形;
(2)若AB=4,AD=8,求MD的长.
如图,直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.
(1)△OBC与△ABD全等吗?判断并证明你的结论;
(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由.
阅读所给的材料,然后解答问题:如图①,在“格点”直角坐标系上我们可以发现:求线段DE的长度,可以转化为求Rt△DEF的斜边长,例如:在坐标系中我们发现:D(-7,5),E(4,-3),所以DF=|5-(-3)|=8,EF=|4-(-7)|=11,所以据勾股定理可得:DE=.
(1)在图①中用上面的方法可求出线段AB的长为 ;
(2)在图②中:设A(x1.y1),B(x2,y2),试用x1,x2,y1,y2表示:AC= ,BC= ,AB= ;
(3)已知A(2,1),B(4,3),试用(2)中得出的结论求线段AB的长;
(4)已知A(2,1),B(4,3),若点C为y轴上的点且使得△ABC是以AB为底边的等腰三角形,试求出点C的坐标.