今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为 , , , 四个等级,并绘制了如下不完整的频数分布表和扇形统计图:
等级 |
成绩 |
频数(人数) |
|
|
4 |
|
|
|
|
|
16 |
|
|
6 |
根据以上信息,解答以下问题:
(1)表中的 ;
(2)扇形统计图中 , , 等级对应的扇形的圆心角为 度;
(3)该校准备从上述获得 等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用 , 表示)和两名女生(用 , 表示),请用列表或画树状图的方法求恰好选取的是 和 的概率.
如图,在△ABC中,AB=AC,D是BC中点,AE平分∠BAD交BC于点E,点O是AB上一点,⊙O过A、E两点, 交AD于点G,交AB于点F.
(1)求证:BC与⊙O相切;
(2)当∠BAC=120°时,求∠EFG的度数.
某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:
甲 |
95 |
82 |
88 |
81 |
93 |
79 |
84 |
78 |
乙 |
83 |
92 |
80 |
95 |
90 |
80 |
85 |
75 |
(1)请你计算这两组数据的平均数、中位数;
(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.
如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.
(1)求证:AB=DC;
(2)试判断△OEF的形状,并说明理由.
(本题满分6分)
先化简,再求值:,其中
.
如图,在平面直角坐标系中,顶点为(,
)的抛物线交
轴于
点,交
轴于
,
两点(点
在点
的左侧). 已知
点坐标为(
,
).
(1)求此抛物线的解析式;
(2)过点作线段
的垂线交抛物线于点
, 如果以点
为圆心的圆与直线
相切,请判断抛物线的对称轴
与⊙
有怎样的位置关系,并给出证明;
(3)已知点是抛物线上的一个动点,且位于
,
两点之间,问:当点