某校为了推进学校均衡发展,计划再购进一批图书,丰富学生的课外阅读.为了解学生对课外阅读的需求情况,学校对学生所喜爱的读物:
.文学,
.艺术,
.科普,
.生活,
.其他,进行了随机抽样调查(规定每名学生只能选其中一类读物),并将调查结果绘制成以下不完整的统计图表.
(1) , ,请补全条形统计图;
(2)如果全校有2500名学生,请你估计全校有多少名学生喜爱科普读物;
(3)学校从喜爱科普读物的学生中选拔出2名男生和3名女生,并从中随机抽取2名学生参加科普知识竞赛,请你用树状图或列表法求出恰好抽到一名男生和一名女生的概率.
如图,已知线段AB∥CD,AD与B C相交于点K,E是线段AD上一动点.若BK=
KC,求
的值
连接BE,若BE平分∠ABC,则当AE=
AD时,猜想线段AB、BC、CD三者之间有怎样的等量关系?请写出你的结论并予以证明
再探究:当AE=
AD(
),而其余条件不变时,线段AB、BC、CD三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.
如图,在△ABC中,以AC边为直径的⊙O交BC边于点D,在劣弧上取一点E,并使∠EBC=∠DEC,延长BE依次交AC于G,交⊙O于H求证:AC⊥BH
若∠ABC=45°,⊙O的直径等于10,BD=8,求CE的长
为实施“农村留守儿童关爱计划”,某校对全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;
某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.
如图,已知反比例函数的图象经过点(
,8),直线
经过该反比例函数图象上的点Q(4,
).
求上述反比例函数和直线的函数表达式;
设该直线与
轴、
轴分别相交于A 、B两点,与反比例函数图象的另一个交点为P,连结0P、OQ,求△OPQ的面积.
随着经济的发展,尹进所在的公司每年都在元月一次性的提高员工当年的月工资.尹进2008 年的月工资为2000 元,在2010 年时他的月工资增加到2420 元,他2011年的月工资按2008 到2010 年的月工资的平均增长率继续增长尹进2011年的月工资为多少?
尹进看了甲、乙两种工具书的单价,认为用自己2011年6 月份的月工资刚好购买若干本甲种工具书和一些乙种工具书,当他拿着选定的这些工具书去付书款时,发现自己计算书款时把这两种工具书的单价弄对换了,故实际付款比2011年6月份的月工资少了242 元,于是他用这242 元又购买了甲、乙两种工具书各一本,并把购买的这两种工具书全部捐献给西部山区的学校.请问,尹进总共捐献了多少本工具书?