游客
题文

为了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘成如图所示的频数分布直方图,已知成绩 x (单位:分)均满足“ 50 x < 100 ”.根据图中信息回答下列问题:

(1)图中 a 的值为        

(2)若要绘制该样本的扇形统计图,则成绩 x 在“ 70 x < 80 ”所对应扇形的圆心角度数为       度;

(3)此次比赛共有300名学生参加,若将“ x 80 ”的成绩记为“优秀”,则获得“优秀“的学生大约有        人:

(4)在这些抽查的样本中,小明的成绩为92分,若从成绩在“ 50 x < 60 ”和“ 90 x < 100 ”的学生中任选2人,请用列表或画树状图的方法,求小明被选中的概率.

科目 数学   题型 计算题   难度 中等
知识点: 用样本估计总体 列表法与树状图法 频数(率)分布直方图 扇形统计图
登录免费查看答案和解析
相关试题

计算: | 3 2 | + sin 60 ° 27 ( 1 1 2 ) 2 + 2 2

先化简,再求值: ( 1 + x 2 + 2 x 2 ) ÷ x + 1 x 2 4 x + 4 ,其中 x 满足 x 2 2 x 5 = 0

解不等式组,并将解集在数轴上表示出来.

2 x 7 < 3 x 1 , 5 1 2 x + 4 x

如图,在平面直角坐标系中,矩形 OADB 的顶点 A B 的坐标分别为 A ( - 6 , 0 ) B ( 0 , 4 ) .过点 C ( - 6 , 1 ) 的双曲线 y = k x ( k 0 ) 与矩形 OADB 的边 BD 交于点 E

(1)填空: OA =     k =    ,点 E 的坐标为   

(2)当 1 t 6 时,经过点 M ( t - 1 , - 1 2 t 2 + 5 t - 3 2 ) 与点 N ( - t - 3 , - 1 2 t 2 + 3 t - 7 2 ) 的直线交 y 轴于点 F ,点 P 是过 M N 两点的抛物线 y = - 1 2 x 2 + bx + c 的顶点.

①当点 P 在双曲线 y = k x 上时,求证:直线 MN 与双曲线 y = k x 没有公共点;

②当抛物线 y = - 1 2 x 2 + bx + c 与矩形 OADB 有且只有三个公共点,求 t 的值;

③当点 F 和点 P 随着 t 的变化同时向上运动时,求 t 的取值范围,并求在运动过程中直线 MN 在四边形 OAEB 中扫过的面积.

某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为 Q ,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的 Q 值都以平均值 n 计算.第一年有40家工厂用乙方案治理,共使 Q 值降低了12.经过三年治理,境内长江水质明显改善.

(1)求 n 的值;

(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数 m ,三年来用乙方案治理的工厂数量共190家,求 m 的值,并计算第二年用乙方案新治理的工厂数量;

(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的 Q 值比上一年都增加一个相同的数值 a .在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的 Q 值与当年用甲方案治理降低的 Q 值相等,第三年,用甲方案使 Q 值降低了39.5.求第一年用甲方案治理降低的 Q 值及 a 的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号