游客
题文

我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:

例:将 0 . 7 ̇ 化为分数形式

由于 0 . 7 ̇ = 0 . 777 ,设 x = 0 . 777

10 x = 7 . 777

- ①得 9 x = 7 ,解得 x = 7 9 ,于是得 0 . 7 ̇ = 7 9

同理可得 0 . 3 ̇ = 3 9 = 1 3 1 . 4 ̇ = 1 + 0 . 4 ̇ = 1 + 4 9 = 13 9

根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)

(基础训练)

(1) 0 . 5 ̇ =        5 . 8 ̇ =        

(2)将 0 . 2 ̇ 3 ̇ 化为分数形式,写出推导过程;

(能力提升)

(3) 0 . 3 ̇ 1 5 ̇ =        2 . 0 1 ̇ 8 ̇ =       

(注 : 0 . 3 ̇ 1 5 ̇ = 0 . 315315 2 . 0 1 ̇ 8 ̇ = 2 . 01818 )

(探索发现)

(4)①试比较 0 . 9 ̇ 与1的大小: 0 . 9 ̇       1(填“ > ”、“ < ”或“ = )

②若已知 0 . 2 ̇ 8571 4 ̇ = 2 7 ,则 3 . 7 ̇ 1428 5 ̇ =        

(注 : 0 . 2 ̇ 8571 4 ̇ = 0 . 285714285714 )

科目 数学   题型 计算题   难度 中等
知识点: 规律型:数字的变化类 一元一次方程的应用
登录免费查看答案和解析
相关试题

如图,在直角坐标系 xOy 中,菱形 OABC 的边 OA x 轴正半轴上,点 B C 在第一象限, C = 120 ° ,边长 OA = 8 .点 M 从原点 O 出发沿 x 轴正半轴以每秒1个单位长的速度作匀速运动,点 N A 出发沿边 AB - BC - CO 以每秒2个单位长的速度作匀速运动,过点 M 作直线 MP 垂直于 x 轴并交折线 OCB P ,交对角线 OB Q ,点 M 和点 N 同时出发,分别沿各自路线运动,点 N 运动到原点 O 时, M N 两点同时停止运动.

(1)当 t = 2 时,求线段 PQ 的长;

(2)求 t 为何值时,点 P N 重合;

(3)设 ΔAPN 的面积为 S ,求 S t 的函数关系式及 t 的取值范围.

我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量 y (万件)与月份 x (月)的关系为: y = x + 4 1 x 8 , x 为整数 - x + 20 9 x 12 , x 为整数 ,每件产品的利润 z (元)与月份 x (月)的关系如下表:

x

1

2

3

4

5

6

7

8

9

10

11

12

z

19

18

17

16

15

14

13

12

11

10

10

10

(1)请你根据表格求出每件产品利润 z (元)与月份 x (月)的关系式;

(2)若月利润 w (万元) = 当月销售量 y (万件) × 当月每件产品的利润 z (元),求月利润 w (万元)与月份 x (月)的关系式;

(3)当 x 为何值时,月利润 w 有最大值,最大值为多少?

已知直线 l : y = kx + 1 与抛物线 y = x 2 - 4 x

(1)求证:直线 l 与该抛物线总有两个交点;

(2)设直线 l 与该抛物线两交点为 A B O 为原点,当 k = - 2 时,求 ΔOAB 的面积.

如图,在大楼 AB 正前方有一斜坡 CD ,坡角 DCE = 30 ° ,楼高 AB = 60 米,在斜坡下的点 C 处测得楼顶 B 的仰角为 60 ° ,在斜坡上的 D 处测得楼顶 B 的仰角为 45 ° ,其中点 A C E 在同一直线上.

(1)求坡底 C 点到大楼距离 AC 的值;

(2)求斜坡 CD 的长度.

如图,反比例函数 y = k x ( x > 0 ) 过点 A ( 3 , 4 ) ,直线 AC x 轴交于点 C ( 6 , 0 ) ,过点 C x 轴的垂线 BC 交反比例函数图象于点 B

(1)求 k 的值与 B 点的坐标;

(2)在平面内有点 D ,使得以 A B C D 四点为顶点的四边形为平行四边形,试写出符合条件的所有 D 点的坐标.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号