某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度 与时间 之间的函数关系,其中线段 、 表示恒温系统开启阶段,双曲线的一部分 表示恒温系统关闭阶段.
请根据图中信息解答下列问题:
(1)求这天的温度 与时间 的函数关系式;
(2)求恒温系统设定的恒定温度;
(3)若大棚内的温度低于 时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?
如图,在△ABC中,AB=AC,AD和BE是高,它们相交于点H,且AE=BE
求证:AH=2BD
如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE,AE于点G、H试猜测线段AE和BD数量关系,并说明理由
如图,∠B=∠E=Rt∠,AB=AE,∠1=∠2,请证明∠3=∠4
如图,在△ABC中,AB=AC,∠ABC=72°.
(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);
(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.
如图所示,在平面直角坐标系中,M是轴正半轴上一点,⊙M与
轴的正半轴交于A、B两点,A在B的左侧,且OA、OB的长是方程
的两根,ON是⊙M的切线,N为切点,N在第四象限.
(1)求⊙M的直径;
(2)求直线ON的函数关系式;
(3)在轴上是否存在一点T,使△OTN是等腰三角形?若存在,求出T的坐标;若不存在,请说明理由.