游客
题文

如图,在射线 BA BC AD CD 围成的菱形 ABCD 中, ABC = 60 ° AB = 6 3 O 是射线 BD 上一点, O BA BC 都相切,与 BO 的延长线交于点 M .过 M EF BD 交线段 BA (或射线 AD ) 于点 E ,交线段 BC (或射线 CD ) 于点 F .以 EF 为边作矩形 EFGH ,点 G H 分别在围成菱形的另外两条射线上.

(1)求证: BO = 2 OM

(2)设 EF > HE ,当矩形 EFGH 的面积为 24 3 时,求 O 的半径.

(3)当 HE HG O 相切时,求出所有满足条件的 BO 的长.

科目 数学   题型 解答题   难度 较难
知识点: 解直角三角形 菱形的性质 切线的性质 四边形综合题
登录免费查看答案和解析
相关试题

如图,在平面直角坐标系中,⊙A与x轴相交于C(﹣2,0),D(﹣8,0)两点,与y轴相切于点B(0,4).

(1)求经过B,C,D三点的抛物线的函数表达式;
(2)设抛物线的顶点为E,求证:直线CE与⊙A相切;
(3)在x轴下方的抛物线上,是否存在一点F,使△BDF面积最大,最大值是多少?并求出点F的坐标.

某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:

②该产品90天内每天的销售价格与时间(第x天)的关系如下表:

(1)求m关于x的一次函数表达式;
(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格﹣每件成本)】
(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.

在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(﹣2,﹣4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有有无数多个.
(1)若点M(2,a)是反比例函数(k为常数,)图象上的“理想点”,求这个反比例函数的表达式;
(2)函数(m为常数,)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.

如题23图,反比例函数)的图象与直线相交于点C,过直线上点A(1,3)作AB⊥x轴于点B,交反比例函数图象于点D,且AB=3BD.

(1)求k的值;
(2)求点C的坐标;
(3)在y轴上确实一点M,使点M到C、D两点距离之和d=MC+MD,求点M的坐标.


如图,已知直线y=-x+3 分别与x、y轴交于点A和B.

(1)求点A、B的坐标;
(2)求原点O到直线l的距离;
(3)若圆M的半径为2,圆心M在y轴上,当圆M与直线l相切时,求点M的坐标.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号