某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为 .设饲养室长为 ,占地面积为 .
(1)如图1,问饲养室长 为多少时,占地面积 最大?
(2)如图2,现要求在图中所示位置留 宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多 就行了.”请你通过计算,判断小敏的说法是否正确.
如图,在△ABC中,∠B=45°,∠C=60°,AB=3,AD⊥BC于D,求DC.
(1)解方程:
(2)计算:
如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).
(1)求点B的坐标;
(2)已知a=1,C为抛物线与y轴的交点.
①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.
某体育休闲超市购进一种成本为20元/个的风筝,据市场调查分析,若按25元/个销售,一个月能售出70个,在此基础上,售价每涨1元/个,月销售量就减少2个.设这种风筝的销售单价为x(元/个),该超市每月销售这种风筝的所获得的利润为y(元),针对这种风筝的销售情况,请解答下列问题:
(1)用含x的代数式分别表示出每个风筝的销售利润为 元,每月卖出的风筝的个数是 个;
(2)求y与x之间的函数关系式;
(3)若该超市想在每月销售这种风筝的成本不超过800元的情况下,使得月销售利润达到600元,则每个风筝的售价应定为多少元?
如图:AB是⊙O的直径,以OA为直径的⊙O1与⊙O的弦AC相交于D,DE⊥OC,垂足为E。
(1)求证:AD=DC
(2)求证:DE是的切线
(3)如果OE=EC,请判断四边形O1OED是什么四边形,并证明你的结论。