游客
题文

如图,公交车行驶在笔直的公路上,这条路上有 A B C D 四个站点,每相邻两站之间的距离为5千米,从 A 站开往 D 站的车称为上行车,从 D 站开往 A 站的车称为下行车,第一班上行车、下行车分别从 A 站、 D 站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在 A D 站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米 / 小时.

(1)问第一班上行车到 B 站、第一班下行车到 C 站分别用时多少?

(2)若第一班上行车行驶时间为 t 小时,第一班上行车与第一班下行车之间的距离为 s 千米,求 s t 的函数关系式;

(3)一乘客前往 A 站办事,他在 B C 两站间的 P 处(不含 B C 站),刚好遇到上行车, BP = x 千米,此时,接到通知,必须在35分钟内赶到,他可选择走到 B 站或走到 C 站乘下行车前往 A 站.若乘客的步行速度是5千米 / 小时,求 x 满足的条件.

科目 数学   题型 解答题   难度 较难
知识点: 一元一次不等式的应用 一次函数的应用
登录免费查看答案和解析
相关试题

在某项工程中,需要一块面积为3平方米的正方形钢板.应该如何划线、下料呢?要解决这个问题,必须首先求出正方形的边长,那么,请你算一算:

(1)如果精确到十分位,正方形的边长是多少?
(2)如果精确到百分位呢?

500多年前,数学各学派的学者都认为世界上的数只有整数和分数,直到有一天,大数学家毕达哥拉斯的一个名叫希帕索斯的学生,在研究1和2的比例中项时(若1∶x=x∶2,那么x叫1和2的比例中项),他怎么也想不出这个比例中项值.后来,他画了一个边长为1的正方形,设对角线为x,于是由毕达哥拉斯定理x2=12+12=2,他想x代表对角线的长,而x2=2,那么x必定是确定的数,这时他又为自己提出了几个问题:
(1)x是整数吗?为什么不是?
(2)x可能是分数吗?是,能找出来吗?不是,能说出理由吗?亲爱的同学,你能帮他解答这些问题吗?

阅读下列解题过程:已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判定△ABC的形状.
解:∵a2c2-b2c2=a4-b4
∴c2(a2-b2)=(a2+b2)(a2-b2) ②
∴c2=a2+b2
∴△ABC是直角三角形
问:上述解题过程,从哪一步开始出现错误?
请写出该步的序号:_________;
错误的原因为_________;
本题正确的结论是_________.

已知a,b,c为△ABC三边,且满足a2+b2+c2+338=10a+24b+26c.试判断△ABC的形状.

阅读下列解题过程:已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判定△ABC的形状.
解:∵a2c2-b2c2=a4-b4
∴c2(a2-b2)=(a2+b2)(a2-b2) ②
∴c2=a2+b2
∴△ABC是直角三角形
问:上述解题过程,从哪一步开始出现错误?
请写出该步的序号:_________;
错误的原因为_________;
本题正确的结论是_________.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号