某村在推进美丽乡村活动中,决定建设幸福广场,计划铺设相同大小规格的红色和蓝色地砖.经过调查.获取信息如下:
购买数量低于5000块 |
购买数量不低于5000块 |
|
红色地砖 |
原价销售 |
以八折销售 |
蓝色地砖 |
原价销售 |
以九折销售 |
如果购买红色地砖4000块,蓝色地砖6000块,需付款86000元;如果购买红色地砖10000块,蓝色地砖3500块,需付款99000元.
(1)红色地砖与蓝色地砖的单价各多少元?
(2)经过测算,需要购置地砖12000块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过6000块,如何购买付款最少?请说明理由.
(本小题10分)已知抛物线
:
.点F(1,1).
(Ⅰ) 求抛物线
的顶点坐标;
(Ⅱ)
①若抛物线与y轴的交点为A.连接AF,并延长交抛物线
于点B,求证:
②抛物线上任意一点P(
))(
).连接PF.并延长交抛物线
于点Q(
),试判断
是否成立?请说明理由;
(Ⅲ) 将抛物线作适当的平移.得抛物线
:
,若
时.
恒成立,求m的最大值.
(本小题10分)在平面直角坐标系中.已知O坐标原点.点A(3.0),B(0,4).以点A为旋转中心,把△ABO顺时针旋转,得△ACD.记旋转转角为α.∠ABO为β.
(I) 如图①,当旋转后点D恰好落在AB边上时.求点D的坐标;
(Ⅱ) 如图②,当旋转后满足BC∥x轴时.求α与β之闻的数量关系;
(Ⅲ) 当旋转后满足∠AOD=β时.求直线CD的解析式(直接写出即如果即可),
(本小题8分)注意:为了使同学们更好她解答本题,我们提供了—种分析问题的方法,你可以依照这个方法按要求完成本题的解答.也可以选用其他方法,按照解答题的一班要求进行解答即可.
某商品现在的售价为每件35元.每天可卖出50件.市场调查反映:如果调整价格.每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少
?设每件商品降价x元.每天的销售额为y元.
(I) 分析:根据问题中的数量关系.用含x的式子填表:
(Ⅱ) (由以上分析,用含x的式子表示y,并求出问题的解)
(本小题8分)某校兴趣小组坐游轮拍摄海河两岸美景.如图,游轮出发点A与望海楼B的距离为300 m.在一处测得望海校B位于A的北偏东30°方向.游轮沿正北方向行驶一段时间后到达C.在C处测得望海楼B位于C的北偏东60°方向.求此时游轮与望梅楼之间的距离BC (取l.73.结果保留整数).
(本小题8分)已知AB与⊙O相切于点C,OA=OB.OA、OB与⊙O分别交于点D、E.
(I) 如图①,若⊙O的直径为8AB=10,求OA的长(结果保留根号);
(Ⅱ)如图②,连接CD、CE,-若四边形dODCE为菱形.求的值.