游客
题文

图①是某车站的一组智能通道闸机,当行人通过时智能闸机会自动识别行人身份,识别成功后,两侧的圆弧翼闸会收回到两侧闸机箱内,这时行人即可通过.图②是两圆弧翼展开时的截面图,扇形 ABC DEF 是闸机的“圆弧翼”,两圆弧翼成轴对称, BC EF 均垂直于地面,扇形的圆心角 ABC = DEF = 28 ° ,半径 BA = ED = 60 cm ,点 A 与点 D 在同一水平线上,且它们之间的距离为 10 cm

(1)求闸机通道的宽度,即 BC EF 之间的距离(参考数据: sin 28 ° 0 . 47 cos 28 ° 0 . 88 tan 28 ° 0 . 53 )

(2)经实践调查,一个智能闸机的平均检票速度是一个人工检票口平均检票速度的2倍,180人的团队通过一个智能闸机口比通过一个人工检票口可节约3分钟,求一个智能闸机平均每分钟检票通过的人数.

科目 数学   题型 解答题   难度 中等
知识点: 分式方程的应用 解直角三角形的应用
登录免费查看答案和解析
相关试题

越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点 A 处安置测倾器,测得点 M 的仰角 MBC = 33 ° ,在与点 A 相距3.5米的测点 D 处安置测倾器,测得点 M 的仰角 MEC = 45 ° (点 A D N 在一条直线上),求电池板离地面的高度 MN 的长.(结果精确到1米;参考数据 sin 33 ° 0 . 54 cos 33 ° 0 . 84 tan 33 ° 0 . 65 )

为有效推进儿童青少年近视防控工作,教育部办公厅等十五部门联合制定《儿童青少年近视防控光明行动工作方案 ( 2021 2025 年)》,共提出八项主要任务,其中第三项任务为强化户外活动和体育锻炼.我市各校积极落实方案精神,某学校决定开设以下四种球类的户外体育选修课程:篮球、足球、排球、乒乓球.为了解学生需求,该校随机对本校部分学生进行了“你选择哪种球类课程”的调查(要求必须选择且只能选择其中一门课程),并根据调查结果绘制成不完整的统计图表.

课程

人数

篮球

m

足球

21

排球

30

乒乓球

n

根据图表信息,解答下列问题:

(1)分别求出表中 m n 的值;

(2)求扇形统计图中“足球”对应的扇形圆心角的度数;

(3)该校共有2000名学生,请你估计其中选择“乒乓球”课程的学生人数.

先化简,再求值: ( 1 + 2 a + 1 ) ÷ a 2 + 6 a + 9 a + 1 ,其中 a = 3 3

(1)计算: 4 + ( 1 + π ) 0 2 cos 45 ° + | 1 2 |

(2)解不等式组: 5 x 2 > 3 x + 1 1 2 x 1 7 3 2 x②

如图,在四边形 ABCD 中, AD / / BC ABC = 90 ° AD = CD O 是对角线 AC 的中点,联结 BO 并延长交边 CD 或边 AD 于点 E

(1)当点 E CD 上,

①求证: ΔDAC ΔOBC

②若 BE CD ,求 AD BC 的值;

(2)若 DE = 2 OE = 3 ,求 CD 的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号