为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.
七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.
八年级20名学生的测试成绩条形统计图如图:
七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:
年级 |
平均数 |
众数 |
中位数 |
8分及以上人数所占百分比 |
七年级 |
7.5 |
|
7 |
|
八年级 |
7.5 |
8 |
|
|
根据以上信息,解答下列问题:
(1)直接写出上述表中的 , , 的值;
(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃极分类知识较好?请说明理由(写出一条理由即可);
(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?
用公式法解一元二次方程:.
如图1,点A在x轴上,点D在y轴上,以OA、AD为边分别作等边△OAC和等边△ADE,若D(0,4),A(2,0).
(1)若∠DAC=10°,求CE的长和∠AEC的度数.
(2)如图2,若点P为x轴正半轴上一动点,点P在点A的右边,连PC,以PC为边在第一象限作等边△PCM,延长MA交y轴于N,当点P运动时.
①∠ANO的值是否发生变化?若不变,求其值,若变化,请说明理由.
②AM-AP的值是否发生变化?若不变,求其值,若变化,请说明理由.
如图,在四边形ABCD中,,
,DE交BC于E,交AC于F,
,
.
(1)求证:是等腰三角形;
(2)若,求△ACD的面积.
小丽想用一块面积为的正方形纸片,沿着边的方向裁出一块面积为
的长方形纸片,使它长宽之比为
,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片.
已知:如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.
(1)求证:AB=DC.(2)试判断△OEF的形状,并说明理由.