为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.
七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.
八年级20名学生的测试成绩条形统计图如图:
七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:
年级 |
平均数 |
众数 |
中位数 |
8分及以上人数所占百分比 |
七年级 |
7.5 |
|
7 |
|
八年级 |
7.5 |
8 |
|
|
根据以上信息,解答下列问题:
(1)直接写出上述表中的 , , 的值;
(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃极分类知识较好?请说明理由(写出一条理由即可);
(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?
如图,已知二次函数
的图象的对称轴为直线
,且与
轴有两个不同的交点,其中一个交点坐标为
.
(1)求二次函数的关系式;
(2)在抛物线上有一点
,其横坐标为-2,直线
过点
并绕着点
旋转,与抛物线的另一个交点是点
,点
的横坐标满足
,当
的面积最大时,求出此时直线
的关系式;
(3)抛物线上是否存在点
使
的面积与(2)中
的最大面积相等.若存在,求出点
的横坐标;若不存在说明理由.
如图(Ⅰ),在平面直角坐标系中,⊙O′是以点O′(2,﹣2)为圆心,半径为2的圆,⊙O″是以点O″(0,4)为圆心,半径为2的圆.
(1)将⊙O′竖直向上平移2个单位,得到⊙O1,将⊙O″水平向左平移1个单位,得到⊙O2如图(Ⅱ),分别求出⊙O1和⊙O2的圆心坐标.
(2)两圆平移后,⊙O2与y轴交于A、B两点,过A、B两点分别作⊙O2的切线,交x轴与C、D两点,求△O2AC和△O2BD的面积
.
某经营世界著名品牌的总公司,在我市有甲、乙两家分公司,这两家公司都销售香水和护肤品.总公司现香水70瓶,护肤品30瓶,分配给甲、乙两家分公司,其中40瓶给甲公司,60瓶给乙公司,且都能卖完,两公司的利润(元)如下表.
(1)假设总公司分配给甲公司x瓶香水,求:甲、乙两家公司的总利润W与x之间的函数关系式;
(2)在(1)的条件下,甲公司的利润会不会比乙公司的利润高?并说明理由;
(3)若总公司要求总利润不低于17370元,请问有多少种不同的分配方案,并将各种方案设计出来.
每瓶香水利润 |
每瓶护肤品利润 |
|
甲公司 |
180 |
200 |
乙公司 |
160 |
150 |
一个不透明的袋子中,装有红黑两种颜色的小球(除颜色不同外其他都相同),其中一个红球,两个分别标有A、B黑球.
(1)小李第一次从口袋中摸出一个球,并且不放回,第二次又从口袋中摸出一个球,则小李两次都摸出黑球的概率是多少?试用树状图或列表法加以说明;
(2)小张第一次从口袋中摸出一个球,摸到红球不放回,摸到黑球放回.第二次又从口袋中摸出一个球,则小张第二次摸到黑球的概率是多少?试用树状图或列表法加以说明.
如图,已知反比例函数(m是常数,m≠0),一次函数y=ax+b(a、b为常数,a≠0),其中一次函数与x轴,y轴的交点分别是A(﹣4,0),B(0,2).
(1)求一次函数的关系式;
(2)反比例函数图象上有一点P满足:①PA⊥x轴;②PO=(O为坐标原点),求反比例函数的关系式;
(3)求点P关于原点的对称点Q的坐标,判断点Q是否在该反比例函数的图象上.