游客
题文

在一次数学研究性学习中,小兵将两个全等的直角三角形纸片 ABC DEF 拼在一起,使点 A 与点 F 重合,点 C 与点 D 重合(如图 1 ) ,其中 ACB = DFE = 90 ° BC = EF = 3 cm AC = DF = 4 cm ,并进行如下研究活动.

活动一:将图1中的纸片 DEF 沿 AC 方向平移,连结 AE BD (如图 2 ) ,当点 F 与点 C 重合时停止平移.

[思考]图2中的四边形 ABDE 是平行四边形吗?请说明理由.

[发现]当纸片 DEF 平移到某一位置时,小兵发现四边形 ABDE 为矩形(如图 3 ) .求 AF 的长.

活动二:在图3中,取 AD 的中点 O ,再将纸片 DEF 绕点 O 顺时针方向旋转 α ( 0 α 90 ) ,连结 OB OE (如图 4 )

[探究]当 EF 平分 AEO 时,探究 OF BD 的数量关系,并说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 平移的性质 矩形的性质 全等三角形的判定与性质 勾股定理
登录免费查看答案和解析
相关试题

为了解南京市2012年市城镇非私营单位员工每月的收入状况,统计局对市城镇非私营单位随机抽取了1000人进行抽样调查.整理样本数据,得到下列图表:
市城镇非私营单位1000人月收入频数分布表

(1)如果1000人全部在金融行业抽取,这样的抽样是否合理?请说明理由;
(2)根据这样的调查结果,绘制条形统计图;
(3)2012年南京市城镇非私营单位月平均工资为5034元,请你结合上述统计的数据,谈一谈用平均数反映月收入情况是否合理?

甲、乙、丙三位歌手进入“我是歌手”的冠、亚、季军的决赛,他们通过抽签来决定演唱顺序.
(1)求甲第一位出场的概率;
(2)求甲比乙先出场的概率.

已知:如图,在正方形ABCD中,点E、F在对角线BD上,且BF=DE.

(1)求证:四边形AECF是菱形.
(2)若AB=2,BF=1,求四边形AECF的面积.

解不等式组,并写出不等式组的整数解.

(本小题满分11分)
如图,在平面直角坐标系中,已知点A(0,2),点P是轴上一动点,以线段AP为一边,在其一侧作等边三角形APQ.当点P运动到原点O处时,记Q的位置为B.

(1)求点B的坐标;
(2)求证:当点P在轴上运动(P不与O重合)时,∠ABQ为定值;
(3)是否存在点P,使得以A,O,Q,B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号