某校"校园主持人大赛"结束后,将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:
(1)本次比赛参赛选手共有 人,扇形统计图中" "这一范围的人数占总参赛人数的百分比为 ;
(2)补全图2频数直方图;
(3)赛前规定,成绩由高到低前 的参赛选手获奖.某参赛选手的比赛成绩为88分,试判断他能否获奖,并说明理由;
(4)成绩前四名是2名男生和2名女生,若从他们中任选2人作为该校文艺晚会的主持人,试求恰好选中1男1女为主持人的概率.
在一个暗箱中装有红、黄、白三种颜色的乒乓球(除颜色外其余均相同).其中白球、黄球各1个,若从中任意摸出一个球是白球的概率是.
(1)求暗箱中红球的个数.
(2)先从暗箱中任意摸出一个球记下颜色后放回,再从暗箱中任意摸出一个球,求两次摸到的球颜色不同的概率(用树形图或列表法求解).
在某公路标识牌路口,汽车可直行、可左转、可右转,若这三种可能性相同.
(1)用画树形图的方法,列出两辆汽车经过该路口的所有可能;
(2)求两辆汽车经过该路口都直行的概率.
某品牌电脑销售公司有营销员14人,销售部为制定营销人员月销售电脑定额,统计了这14人某月的销售量如下(单位:台):
销售量 |
200 |
170 |
130 |
80 |
50 |
40 |
人数 |
1 |
1 |
2 |
5 |
3 |
2 |
(1)求这14位营销员该月销售该品牌电脑的平均数、中位数和众数.
(2)销售部经理把每位营销员月销售量定为90台,你认为是否合理?为什么?
(1)已知二次函数的图像经过点(-2,8)和(-1,5),求这个函数的表达式;
(2)已知抛物线的顶点为(-1,-3),与轴交点为(0,-5),求抛物线的解析式.
从2开始,连续的偶数相加,它们和的情况如下表:
加数的个数n |
S |
1 |
2=1×2 |
2 |
2+4=6=2×3 |
3 |
2+4+6=12=3×4 |
4 |
2+4+6+8=20=4×5 |
5 |
2+4+6+8+10=30=5×6 |
(1)若n=8时,则S的值为_____________.
(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=__________________.
(3)根据上题的规律计算2+4+6+8+10+…+98+100的值.