在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“好数”.
定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.
例如: 是“好数”,因为4,2,6都不为0,且 ,6能被6整除;
643不是“好数”,因为 ,10不能被3整除.
(1)判断 , 是否是“好数”?并说明理由;
(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.
(1)计算(5’×2=10’)
①②
(2)解方程(6’×
2=10’)
①②
有一人患了流感,经过两轮传染后共有81人患了流感,每轮传染中平均一个人传染了几个人?
某商场为了吸引顾客,设计了一个摸球获奖的箱子,箱子中共有20个球,其中红球2个,兰球3个,黄球5个,白球10个,并规定购买100元的商品,就有一次摸球的机会,摸到红、兰、黄、白球的(一次只能摸一个),顾客就可以分别得到80元、30元、10元、0元购物卷,凭购物卷仍然可以在商场购买,如果顾客不愿意摸球,那么可以直接获得购物卷10元.
(1)每摸一次球所获购物卷金额的平均值是多少?
(2)你若在此商场购买100元的货物,两种方式中你应选择哪种方式?为什么?
如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC,AD,BD的长.
阅读材料:如图①,一扇窗户打开后用窗钩可将其固定.
(1)这里所运用的几何原理是()
A.三角形的稳定性 | B.两点之间线段最短 |
C.两点确定一条直线 | D.垂线段最短 |
(2)如图②是图①中窗子开到一定位置时的平面图,若,
,
=60cm,求点
到边
的距离.(结果保留根号)