已知抛物线 与 轴只有一个公共点.
(1)若抛物线过点 ,求 的最小值;
(2)已知点 , , 中恰有两点在抛物线上.
①求抛物线的解析式;
②设直线 与抛物线交于 , 两点,点 在直线 上,且 ,过点 且与 轴垂直的直线分别交抛物线和 于点 , .求证: 与 的面积相等.
如果一个自然数 的个位数字不为0,且能分解成 ,其中 与 都是两位数, 与 的十位数字相同,个位数字之和为10,则称数 为"合和数",并把数 分解成 的过程,称为"合分解".
例如 ,21和29的十位数字相同,个位数字之和为10,
是"合和数".
又如 ,18和13的十位数相同,但个位数字之和不等于10,
不是"合和数".
(1)判断168,621是否是"合和数"?并说明理由;
(2)把一个四位"合和数" 进行"合分解",即 . 的各个数位数字之和与 的各个数位数字之和的和记为 ; 的各个数位数字之和与 的各个数位数字之和的差的绝对值记为 .令 ,当 能被4整除时,求出所有满足条件的 .
某工厂有甲、乙两个车间,甲车间生产 产品,乙车间生产 产品,去年两个车间生产产品的数量相同且全部售出.已知 产品的销售单价比 产品的销售单价高100元,1件 产品与1件 产品售价和为500元.
(1) 、 两种产品的销售单价分别是多少元?
(2)随着 时代的到来,工业互联网进入了快速发展时期.今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制 产品的生产车间.预计 产品在售价不变的情况下产量将在去年的基础上增加 ; 产品产量将在去年的基础上减少 ,但 产品的销售单价将提高 .则今年 、 两种产品全部售出后总销售额将在去年的基础上增加 .求 的值.
在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质及其应用的过程.以下是我们研究函数 的性质及其应用的部分过程,请按要求完成下列各小题.
(1)请把下表补充完整,并在给出的图中补全该函数的大致图象;
|
|
|
|
|
|
|
0 |
1 |
2 |
3 |
4 |
5 |
|
|
|
|
|
|
0 |
|
4 |
|
0 |
|
|
|
|
(2)请根据这个函数的图象,写出该函数的 条性质;
(3)已知函数 的图象如图所示.根据函数图象,直接写出不等式 的解集.(近似值保留一位小数,误差不超过
如图,在 中, AB AD.
(1)用尺规完成以下基本作图:在 AB上截取 AE,使得 AE= AD;作∠ BCD的平分线交 AB于点 F.(保留作图痕迹,不写作法)
(2)在(1)所作的图形中,连接 DE交 CF于点 P,猜想△ CDP按角分类的类型,并证明你的结论.
"惜餐为荣,殄物为耻",为了解落实"光盘行动"的情况,某校数学兴趣小组的同学调研了七、八年级部分班级某一天的餐厨垃圾质量.从七、八年级中各随机抽取10个班的餐厨垃圾质量的数据(单位: ,进行整理和分析(餐厨垃圾质量用 表示,共分为四个等级: . , , , . ,下面给出了部分信息.
七年级10个班的餐厨垃圾质量:0.8,0.8,0.8,0.9,1.1,1.1,1.6,1.7,1.9,2.3.
八年级10个班的餐厨垃圾质量中 等级包含的所有数据为:1.0,1.0,1.0,1.0,1.2.
七、八年级抽取的班级餐厨垃圾质量统计表
年级 |
平均数 |
中位数 |
众数 |
方差 |
等级所占百分比 |
七年级 |
1.3 |
1.1 |
|
0.26 |
|
八年级 |
1.3 |
|
1.0 |
0.23 |
|
根据以上信息,解答下列问题:
(1)直接写出上述表中 , , 的值;
(2)该校八年级共30个班,估计八年级这一天餐厨垃圾质量符合 等级的班级数;
(3)根据以上数据,你认为该校七、八年级的"光盘行动",哪个年级落实得更好?请说明理由(写出一条理由即可).