已知抛物线 与 轴交于 、 两点,与 轴交于 点,且点 的坐标为 、点 的坐标为 .
(1)求该抛物线的函数表达式;
(2)如图1,若该抛物线的顶点为 ,求 的面积;
(3)如图2,有两动点 、 在 的边上运动,速度均为每秒1个单位长度,它们分别从点 和点 同时出发,点 沿折线 按 方向向终点 运动,点 沿线段 按 方向向终点 运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动时间为 秒,请解答下列问题:
①当 为何值时, 的面积等于 ;
②在点 、 运动过程中,该抛物线上存在点 ,使得依次连接 、 、 、 得到的四边形 是平行四边形,请直接写出所有符合条件的点 的坐标.
已知:如图,C,D是以线段AB为直径的⊙O上的两点,且四边形OBCD是菱形.求证:.
已知抛物线.(1)求出这个抛物线的对称轴和顶点坐标;(2)在给定的坐标系中画出这个抛物线,若抛物线与x轴交于A,B两点,与y轴交于点C,求△ABC的面积.
如图,在△ABC中,D为AB边上一点,∠B=∠ACD,[若AD=4,BD=3,求AC的长.
如图1,平面直角坐标系中,点
,OC=8,若抛物线
平移后经过C,D两点,得到图1中的抛物线W.
(1)求抛物线W的表达式及抛物线W与轴另一个交点
的坐标;
(2)如图2,以OA,OC为边作矩形OABC,连结OB,若矩形OABC从O点出发沿射线OB方向匀速运动,速度为每秒1个单位得到矩形,求当点
落在抛物线W上时矩形的运动时间;
(3)在(2)的条件下,如图3,矩形从O点出发的同时,点P从出发沿矩形的边
以每秒
个单位的速度匀速运动,当点P到达
时,矩形和点P同时停止运动,设运动时间为
秒.
①请用含的代数式表示点P的坐标;
②已知:点P在边上运动时所经过的路径是一条线段,求点P在边
上运动多少秒时,点D到CP的距离最大.
如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB的中点,∠EDF=90°,DE交AC于点G,DF经过点C.
(1)求∠ADE的度数;
(2)如图2,将图1中的∠EDF绕点D顺时针方向旋转角(
),旋转过程中的任意两个位置分别记为∠E1DF1,∠E2DF2 , DE1交直线AC于点P,DF1交直线BC于点Q,DE2交直线AC于点M,DF2交直线BC于点N,求
的值;
(3)若图1中∠B=,(2)中的其余条件不变,判断
的值是否为定值,如果是,请直接写出这个值(用含
的式子表示);如果不是,请说明理由.