如图,直线 与 轴交于点 ,与 轴交于点 ,点 为线段 的中点,点 是线段 上一动点(不与点 、 重合).
(1)请直接写出点 、点 、点 的坐标;
(2)连接 ,在第一象限内将 沿 翻折得到 ,点 的对应点为点 .若 ,求线段 的长;
(3)在(2)的条件下,设抛物线 的顶点为点 .
①若点 在 内部(不包括边),求 的取值范围;
②在平面直角坐标系内是否存在点 ,使 最大?若存在,请直接写出点 的坐标;若不存在,请说明理由.
已知,如图,直线AB与直线BC相交于点B,点D是直线BC上一点.求作:点E,使直线DE∥AB,且点E到B、D两点的距离相等.(在题目的原图中用尺规完成作图, 并且保留作图痕迹)
结论:
如图,AB是⊙O的直径,点C在⊙O上,CE^ AB于E, CD平分ÐECB, 交过点B的射线于D, 交AB于F, 且BC=BD.
(1)求证:BD是⊙O的切线;
(2)若AE=9, CE=12, 求BF的长.
从2015年1月7日起,中国中东部大部分地区持续出现雾霾天气。某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.
请根据图表中提供的信息解答下列问题:
(1) 填空:m= ,n=,扇形统计图中E组所占的百分比为%.
(2) 若该市人口约有100万人,请你计算其中持D组“观点”的市民人数.
(3) 若在这次接受调查的市民中,随机抽查一人,则此人持C组“观点”的概率是多少?
如图,在平行四边形ABCD中,E,F分别为边AB,CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G .
(1)求证:四边形DEBF是平行四边形;
(2)如果 ∠G=90°, ∠C=60°, BC=2, 求四边形DEBF的面积.
列方程或方程组解应用题:
某工程队改造一条长2 500米的道路.在改造了1 000米后,为了减少施工对交通造成的影响,采用了新的施工工艺,使每天的工作效率是原来的1.5倍,结果提前5天完成任务.求原来每天改造道路多少米?