游客
题文

等面积法是一种常用的、重要的数学解题方法.它是利用“同一个图形的面积相等”、“分割图形后各部分的面积之和等于原图形的面积”、“同底等高或等底同高的两个三角形面积相等”等性质解决有关数学问题,在解题中,灵活运用等面积法解决相关问题,可以使解题思路清晰,解题过程简便快捷.

(1)在直角三角形中,两直角边长分别为3和4,则该直角三角形斜边上的高的长为   ,其内切圆的半径长为   

(2)①如图1, P 是边长为 a 的正 ΔABC 内任意一点,点 O ΔABC 的中心,设点 P ΔABC 各边距离分别为 h 1 h 2 h 3 ,连接 AP BP CP ,由等面积法,易知 1 2 a ( h 1 + h 2 + h 3 ) = S ΔABC = 3 S ΔOAB ,可得 h 1 + h 2 + h 3 =   ;(结果用含 a 的式子表示)

②如图2, P 是边长为 a 的正五边形 ABCDE 内任意一点,设点 P 到五边形 ABCDE 各边距离分别为 h 1 h 2 h 3 h 4 h 5 ,参照①的探索过程,试用含 a 的式子表示 h 1 + h 2 + h 3 + h 4 + h 5 的值.(参考数据: tan 36 ° 8 11 tan 54 ° 11 8 )

(3)①如图3,已知 O 的半径为2,点 A O 外一点, OA = 4 AB O 于点 B ,弦 BC / / OA ,连接 AC ,则图中阴影部分的面积为   ;(结果保留 π )

②如图4,现有六边形花坛 ABCDEF ,由于修路等原因需将花坛进行改造,若要将花坛形状改造成五边形 ABCDG ,其中点 G AF 的延长线上,且要保证改造前后花坛的面积不变,试确定点 G 的位置,并说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 三角形的面积 正多边形和圆 扇形面积的计算
登录免费查看答案和解析
相关试题

我国青海省玉树地区发生强烈地震以后,国家立即启动救灾预案,积极展开灾区运送救灾物资和对伤员的救治工作.已知西宁机场和玉树机场相距800千米,
乙两机沿同一航线各自从西宁、玉树出发,相向而行.如图,线段AB、CD分别表示甲、乙
两机离玉树机场的距离S(百千米)和所用去的时间t(小时)之间的函数关系的图象(注:
为了方便计算,将平面直角坐标系中距离S的单位定为(百千米)).观察图象回答下列问题:
(1)乙机在甲机出发后几小时,才从玉树机场出发?甲、乙两机的飞行速度每小时各为多少千米?
(2)求甲、乙两机各自的S与t的函数关系式;
(3)甲、乙两机相遇时,乙机飞行了几小时?离西宁机场多少千米?

如图,在△ABC中,AB=AC,以AB为直径的半圆O交BC于点D,DE⊥AC,垂足为E.
(1)求证:点D是BC的中点;
(2)判断DE与⊙O的位置关系,并证明你的结论;
(3)如果⊙O的直径为9,cosB=,求DE的长.

如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)

如图,四边形ABCD是菱形,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F,连接CE.

(1)求证:∠DAE=∠DCE;
(2)当AE=2EF时,判断FG与EF有何等量关系?并证明你的结论?

为了迎接扬州烟花三月经贸旅游节,某学校计划由七年级(1)班的3个小组(每个小组人数都相等)制作240面彩旗.后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务,这样这两个小组的每一名学生就要比原计划多做4面彩旗.如果每名学生制作彩旗的面数相等,那么每个小组有多少学生?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号