游客
题文

阅读下面的材料:

如果函数 y = f ( x ) 满足:对于自变量 x 取值范围内的任意 x 1 x 2

(1)若 x 1 < x 2 ,都有 f ( x 1 ) < f ( x 2 ) ,则称 f ( x ) 是增函数;

(2)若 x 1 < x 2 ,都有 f ( x 1 ) > f ( x 2 ) ,则称 f ( x ) 是减函数.

例题:证明函数 f ( x ) = x 2 ( x > 0 ) 是增函数.

证明:任取 x 1 < x 2 ,且 x 1 > 0 x 2 > 0

f ( x 1 ) - f ( x 2 ) = x 1 2 - x 2 2 = ( x 1 + x 2 ) ( x 1 - x 2 )

x 1 < x 2 x 1 > 0 x 2 > 0

x 1 + x 2 > 0 x 1 - x 2 < 0

( x 1 + x 2 ) ( x 1 - x 2 ) < 0 ,即 f ( x 1 ) - f ( x 2 ) < 0 f ( x 1 ) < f ( x 2 )

函数 f ( x ) = x 2 ( x > 0 ) 是增函数.

根据以上材料解答下列问题:

(1)函数 f ( x ) = 1 x ( x > 0 ) f (1) = 1 1 = 1 f (2) = 1 2 f (3) =    f (4) =   

(2)猜想 f ( x ) = 1 x ( x > 0 )   函数(填“增”或“减” ) ,并证明你的猜想.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 反比例函数的性质
登录免费查看答案和解析
相关试题

如图,抛物线y轴交于A点,过点A的直线与抛物线交于另一点B,过点BBCx轴,垂足为点C(3,0).
(1)求直线AB的函数关系式;
(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点PPNx轴,交直线AB于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求st的函数关系式,并写出t的取值范围;
(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CMBN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.

如图(1),△ABC与△EFD为等腰直角三角形,ACDE重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DEDF(或它们的延长线)分别交BC(或它的延长线) 于GH点,如图(2)

(1)问:始终与△AGC相似的三角形有
(2)设CG=xBH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由)
(3)问:当x为何值时,△AGH是等腰三角形.

如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.
1
2 3 4
5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 3233 34 35 36
…………………………
(1)表中第8行的最后一个数是______________,它是自然数_____________的平方,第8行共有____________个数;
(2)用含n的代数式表示:第n行的第一个数是___________________,最后一个数是
________________,第n行共有_______________个数;
(3)求第n行各数之和.

如图,直角梯形纸片ABCD中,AD//BC,∠A=90º,∠C=30º.折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.
(1)求∠BDF的度数;
(2)求AB的长.

李老师为了解班里学生的作息时间表,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:
(1)此次调查的总体是什么?
(2)补全频数分布直方图;
(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号