游客
题文

如图所示,在平面直角坐标系 xOy 中,一次函数 y = 2 x 的图象 l 与函数 y = k x ( k > 0 , x > 0 ) 的图象(记为 Γ ) 交于点 A ,过点 A AB y 轴于点 B ,且 AB = 1 ,点 C 在线段 OB 上(不含端点),且 OC = t ,过点 C 作直线 l 1 / / x 轴,交 l 于点 D ,交图象 Γ 于点 E

(1)求 k 的值,并且用含 t 的式子表示点 D 的横坐标;

(2)连接 OE BE AE ,记 ΔOBE ΔADE 的面积分别为 S 1 S 2 ,设 U = S 1 - S 2 ,求 U 的最大值.

科目 数学   题型 解答题   难度 较难
知识点: 反比例函数与一次函数的交点问题 二次函数的应用
登录免费查看答案和解析
相关试题

如图,点的坐标分别为,将绕点按逆时针方向旋转得到
(1)画出旋转后的,并求点的坐标;
(2)求在旋转过程中,点所经过的路径的长度.(结果保留

如图,一只蚂蚁从点沿数轴向右直爬2个单位到达点,点表示,设点所表示的数为

(1)求的值;
(2)求的值.

两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.

(1)(5分)请找出图2中的全等三角形,______________≌______________
并给予证明(说明:结论中不得含有未标识的字母);
(2)(3分)证明:DC⊥BE.

(8分)如图,在中,垂足为E,垂足为D,cm,cm,求的长.

如图,ADBCDAD=BDAC=BE
(1)证明∠BED=∠C
(2)猜想并说明BE和AC有什么数量和位置关系。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号