如图①,在 中, , , 是斜边 上的中线,点 为射线 上一点,将 沿 折叠,点 的对应点为点 .
(1)若 .直接写出 的长(用含 的代数式表示);
(2)若 ,垂足为 ,点 与点 在直线 的异侧,连接 ,如②,判断四边形 的形状,并说明理由;
(3)若 ,直接写出 的度数.
已知二次函数.
(1)求二次函数的图象与两个坐标轴的交点坐标;
(2)在坐标平面上,横坐标与纵坐标都是整数的点称为整点. 直接写出二次函数
的图象与
轴所围成的封闭图形内部及边界上的整点的个数.
如图,是
的直径,
切
于点
.若sin
=
,
=15,求△
的周长
如图,在正方形网格中,每个小正方形的边长都为1,的顶点都在格点(小正方形的顶点)上,将
绕点
按逆时针方向旋转
得到
.
(1)在正方形网格中,画出;
(2)直接写出旋转过程中动点所经过的路径长.
计算:
如图1,在矩形ABCD中,AB=12厘米,BC=6厘米,点P从A点出发,沿A →B→C→D路线运动,到D点停止;点Q从D点出发,沿D →C →B →A运动,到A点停止.若点P,点Q同时出发,点P的速度为每秒1厘米,点Q的速度为每秒2厘米,a秒时点P,点Q同时改变速度,点P的速度变为每秒b厘米,点Q的速度变为每秒c厘米.如图2是描述点P出发x秒后△APD
的面积S1(
)与x(秒)的函数关系的图象.图3是描述点Q出发x秒后△AQD的面积S2(
)与x(秒)的函数关系图象.根据图象:
(1)求a、b、c的值;
(2)设点P离开点A的路程为y1(厘米),点Q到点A还需要走的路程为y2(厘米),请分别写出改变速度后y1、y2与出发后的运动时间x(秒)的函数关系式,并求出P与Q相遇时x的值.