游客
题文

我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿 AB 摆成如图1所示.已知 AB = 4 . 8 m ,鱼竿尾端 A 离岸边 0 . 4 m ,即 AD = 0 . 4 m .海面与地面 AD 平行且相距 1 . 2 m ,即 DH = 1 . 2 m

(1)如图1,在无鱼上钩时,海面上方的鱼线 BC 与海面 HC 的夹角 BCH = 37 ° ,海面下方的鱼线 CO 与海面 HC 垂直,鱼竿 AB 与地面 AD 的夹角 BAD = 22 ° .求点 O 到岸边 DH 的距离;

(2)如图2,在有鱼上钩时,鱼竿与地面的夹角 BAD = 53 ° ,此时鱼线被拉直,鱼线 BO = 5 . 46 m ,点 O 恰好位于海面.求点 O 到岸边 DH 的距离.

(参考数据: sin 37 ° = cos 53 ° 3 5 cos 37 ° = sin 53 ° 4 5 tan 37 ° 3 4 sin 22 ° 3 8 cos 22 ° 15 16 tan 22 ° 2 5 )

科目 数学   题型 解答题   难度 中等
知识点: 解直角三角形的应用
登录免费查看答案和解析
相关试题

操作:小明准备制作棱长为1cm的正方体纸盒,现选用一些废弃的圆形纸片进行如下设计:

纸片利用率=×100%
发现:(1)方案一中的点A、B恰好为该圆一直径的两个端点.
你认为小明的这个发现是否正确,请说明理由.
(2)小明通过计算,发现方案一中纸片的利用率仅约为38.2%.
请帮忙计算方案二的利用率,并写出求解过程.
探究:(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率.

“校园手机”现象越来越受到社会的关注.某校对本校若干名同学家长对“禁止中学生带手机到学校”现象的看法进行调查,根据调查的数据绘制成如下的条形统计图和扇形统计图.

请根据以上不完整的统计图提供的信息,解答下列问题:
(1)该校共抽查了__________名同学的体育测试成绩,扇形统计图中A、B、C级所占的百分比分别为a=___________;b= ___________;c=_________;
(2)补全条形统计图;
(3)若该校同学共有1600名同学,请你估计该校同学家长认同孩子带手机有___________人.请你谈谈对这个调查结果的看法.

已知线段OA⊥OB,C为OB上中点,D为AO上一点,连AC、BD交于P点.

(1)如图1,当OA=OB且D为AO中点时,求的值;
(2)如图2,当OA=OB,=时,求△BPC与△ACO的面积之比.

已知,如图,在Rt△ABC中,∠C=90º,∠BAC的角平分线AD交BC边于D。
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和

如图,有四条互相不平行的直线L1、L2、L3、L4所截出的八个角.请你任意选择其中的三个角(不可选择未标注的角),尝试找到它们的关系,并选择其中一组予以证明.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号