游客
题文

我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿 AB 摆成如图1所示.已知 AB = 4 . 8 m ,鱼竿尾端 A 离岸边 0 . 4 m ,即 AD = 0 . 4 m .海面与地面 AD 平行且相距 1 . 2 m ,即 DH = 1 . 2 m

(1)如图1,在无鱼上钩时,海面上方的鱼线 BC 与海面 HC 的夹角 BCH = 37 ° ,海面下方的鱼线 CO 与海面 HC 垂直,鱼竿 AB 与地面 AD 的夹角 BAD = 22 ° .求点 O 到岸边 DH 的距离;

(2)如图2,在有鱼上钩时,鱼竿与地面的夹角 BAD = 53 ° ,此时鱼线被拉直,鱼线 BO = 5 . 46 m ,点 O 恰好位于海面.求点 O 到岸边 DH 的距离.

(参考数据: sin 37 ° = cos 53 ° 3 5 cos 37 ° = sin 53 ° 4 5 tan 37 ° 3 4 sin 22 ° 3 8 cos 22 ° 15 16 tan 22 ° 2 5 )

科目 数学   题型 解答题   难度 中等
知识点: 解直角三角形的应用
登录免费查看答案和解析
相关试题

(1)计算:
(2)先化简,再求值:,其中

如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A作AB⊥y轴,垂足为B,连结OA。

(1)求△OAB的面积;
(2)若抛物线经过点A。
①求c的值;
②将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界),求m的取值范围(直接写出答案即可)。

某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量(千克)随销售单价(元/千克)的变化而变化,具体关系式为:,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为(元),解答下列问题:
(1)求的关系式;
(2)当取何值时,的值最大?
(3)如果公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?

如图,在直角坐标平面中,O为坐标原点,二次函数的图象与轴的负半轴相交于点C,点C的坐标为(0,-3),且BO=CO。

(1)求出B点坐标和这个二次函数的解析式
(2)求出的增大而减小的自变量的取值范围

用长度为32m的金属材料制成如图所示的金属框,下部为一个矩形,上部为一个等边三角形。当下部的矩形面积最大时,求矩形的AB、BC的边长各为多少m?并求此时整个金属框的面积是多少?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号