游客
题文

如图,抛物线 y = - 3 4 x 2 + bx + c x 轴交于点 A 和点 C ( - 1 , 0 ) ,与 y 轴交于点 B ( 0 , 3 ) ,连接 AB BC ,点 P 是抛物线第一象限上的一动点,过点 P PD x 轴于点 D ,交 AB 于点 E

(1)求抛物线的解析式;

(2)如图1,作 PF PD 于点 P ,使 PF = 1 2 OA ,以 PE PF 为邻边作矩形 PEGF .当矩形 PEGF 的面积是 ΔBOC 面积的3倍时,求点 P 的坐标;

(3)如图2,当点 P 运动到抛物线的顶点时,点 Q 在直线 PD 上,若以点 Q A B 为顶点的三角形是锐角三角形,请直接写出点 Q 纵坐标 n 的取值范围.

科目 数学   题型 解答题   难度 困难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

解分式方程:

(8分)在甲村至乙村的公路有一块山地正在开发.现有一C处需要爆破.已知点C
与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,
如图13所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公
路AB段是否有危险,是否需要暂时封锁? 请通过计算进行说明。

如图,正方形OABC的面积为9,点O为坐标原点,点B在函数
(k>0,x>0)的图象上,点P(m、n)是函数(k>0,x>0)的图象上任意一点,
过点P分别作x轴、y轴的垂线,垂足分别为E、F,并设矩形OEPF和正方形OABC不重合部分的面积为S.

(1)求B点坐标和k的值;
(2)当S=时,求点P的坐标。

如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D。

试说明:AC∥DF。
解:因为 ∠1=∠2(已知)
∠1=∠3,∠2=∠4()
所以∠3=∠4(等量代换)
所以 ()
所以 ∠C=∠ABD,()
又因为 ∠C=∠D(已知)
所以∠D=∠ABD(等量代换)
所以 AC∥DF()

如图,已知直线被直线所截,,如果,求∠1的度数。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号