如图,抛物线 交 轴于 , 两点,交 轴于点 ,动点 在抛物线的对称轴上.
(1)求抛物线的解析式;
(2)当以 , , 为顶点的三角形周长最小时,求点 的坐标及 的周长;
(3)若点 是平面直角坐标系内的任意一点,是否存在点 ,使得以 , , , 为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点 的坐标;若不存在,请说明理由.
(1)如图①,在△ABC中,∠ABC的平分线BF交AC于点F,过点F作DF∥BC。求证:BD=DF;
(2)如图②,在△ABC中,∠ABC的平分线BF与∠ACB的平分线CF相交于点F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E,那么BD、CE、DE之间存在什么关系?请证明这种关系;
(3)如图③,在△ABC中,∠ABC的平分线BF与∠ACB的外角平分线CF相交于点F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E,那么BD、CE、DE之间存在什么关系?请写出你的猜想(不需证明)。
如图,四边形ABCD的三边(AB、BC、CD)和BD的长度都为5厘米,动点P从A出发(A→B→D)到D,速度为2厘米/秒,动点Q从点D出发(D→C→B→A)到A,速度为2.8厘米/秒。5秒后P、Q相距3厘米,试确定5秒时△APQ的形状。
如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG。
求证:(1)AD=AG,
(2)AD与AG的位置关系如何。
两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B、C、E在同一条直线上,连结DC.
(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);
(2)试说明:DC⊥BE.
小明想知道学校旗杆的高度,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度。