研究立体图形问题的基本思路是把立体图形问题转化为平面图形问题.
(1)阅读材料
立体图形中既不相交也不平行的两条直线所成的角,就是将直线平移使其相交所成的角.
例如,正方体 (图 ,因为在平面 中, , 与 相交于点 ,所以直线 与 所成的 就是既不相交也不平行的两条直线 与 所成的角.
解决问题
如图1,已知正方体 ,求既不相交也不平行的两直线 与 所成角的大小.
(2)如图2, , 是正方体相邻两个面上的点;
①下列甲、乙、丙三个图形中,只有一个图形可以作为图2的展开图,这个图形是 ;
②在所选正确展开图中,若点 到 , 的距离分别是2和5,点 到 , 的距离分别是4和3, 是 上一动点,求 的最小值.
小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为、
、
,求△ABC的面积.
小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.请回答:
(1)求图1中△ABC的面积;
参考小明解决问题的方法,完成下列问题:
(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).
①利用构图法在答题卡的图2中画出三边长分别为、
、
的格点△DEF;
②计算△DEF的面积是 .
(3)如图3,已知△PQR,以PQ,PR为边向外作正方形PQAF,PRDE,连接EF.若PQ=,PR=
,QR=
,求六边形AQRDEF的面积.
已知a,b,c满足,
(1)求,b,c的值;
(2)试问以,b,c为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.
如图,△AOB、△COD是等腰直角三角形,点D在AB上.
(1)求证:△AOC≌△BOD;
(2)若AD=3,BD=1,求CD和△ABC的面积.
如图,将边长为8的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处,求:
(1)线段BE的长
(2)当∠DGK=450时,求四边形EFKG的面积.
如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点.
(1)求A、C两点之间的距离.
(2)确定目的地C在营地A的什么方向.