游客
题文

综合与实践

问题情境:数学活动课上,老师出示了一个问题:如图①,在 ABCD 中, BE AD ,垂足为 E F CD 的中点,连接 EF BF ,试猜想 EF BF 的数量关系,并加以证明.

独立思考:(1)请解答老师提出的问题;

实践探究:(2)希望小组受此问题的启发,将 ABCD 沿着 BF ( F CD 的中点)所在直线折叠,如图②,点 C 的对应点为 C ' ,连接 DC ' 并延长交 AB 于点 G ,请判断 AG BG 的数量关系,并加以证明.

问题解决:(3)智慧小组突发奇想,将 ABCD 沿过点 B 的直线折叠,如图③,点 A 的对应点为 A ' ,使 A ' B CD 于点 H ,折痕交 AD 于点 M ,连接 A ' M ,交 CD 于点 N .该小组提出一个问题:若此 ABCD 的面积为20,边长 AB = 5 BC = 2 5 ,求图中阴影部分(四边形 BHNM ) 的面积.请你思考此问题,直接写出结果.

科目 数学   题型 解答题   难度 较难
知识点: 平行四边形的性质 翻折变换(折叠问题) 四边形综合题
登录免费查看答案和解析
相关试题

如图,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于点E,BF∥DE且交AG于点F.

(1)求证:AE=BF;
(2)如图1,连接DF、CE,探究线段DF与CE的关系并证明;
(3)如图2,若AB=,G为CB中点,连接CF,直接写出四边形CDEF的面积.

如图所示,一根长2.5米的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,此时OB的距离为0.7米,设木棍的中点为P.若木棍A端沿墙下滑,且B端沿地面向右滑行.

(1)如果木棍的顶端A沿墙下滑0.4米,那么木棍的底端B向外移动多少距离?
(2)请判断木棍滑动的过程中,点P到点O的距离是否变化,并简述理由.

如图,□ABCD中,AB⊥AC,AB=1,BC=.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.

(1)试说明在旋转过程中,线段AF与EC总保持相等;
(2)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,请直接写出此时AC绕点O顺时针旋转的度数.

一个三角形的三边长分别为.
(1)求它的周长(要求结果化简);
(2)请你给出一个适当的x的值,使它的周长为整数,并求出此时三角形周长的值.

如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:

(1)在图中画一条线段MN,使MN=
(2)在图‚中画一个三边长均为无理数,且各边都不相等的直角△DEF。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号