游客
题文

某学校组织“一带一路”知识竞赛,有AB两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束:若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分:B类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.

(1)若小明先回答A类问题,记 X 为小明的累计得分,求 X 的分布列;

(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

本小题满分12分
如图,在直三棱柱ABC—A1B1C1中,AC=1,AB=,BC=,AA1=
(I)求证:A1B⊥B1C;
(II)求二面角A1—B1C—B的大小。

(本小题满分12分)
甲乙两个学校高三年级分别为1100人,1000人,为了统计两个学校在地区二模考试的数学科目成绩,采用分层抽样抽取了105名学生的成绩,并作出了部分频率分布表如下:(规定考试成绩在[120,150]内为优秀)
甲校:

分组







[140,150]
频数
2
3
10
15
15
x
3
1

乙校:

分组







[140,150]
频数
1
2
9
8
10
10
y
3

(1)计算x,y的值,并分别估计两上学校数学成绩的优秀率;
(2)由以上统计数据填写下面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.


甲校
乙校
总计
优秀



非优秀



总计



附:


0.10
0.025
0.010

2.706
5.024
6.635

(本小题满分10分)
在△ABC中,a、b、c分别是角A、B、C的对边,
.
(1)求角A的大小;
(2)求的取值区间。


已知函数(常数)的图像过点两点.
(1)求的解析式;
(2)若函数的图像与函数的图像关于直线对称,若不等式恒成立,求实数的取值范围;
(3)若是函数图像上的点列,正半轴上的点列,为坐标原点,是一系列正三角形,记它们的边长是,探求数列的通项公式,并说明理由.


某园林公司计划在一块为圆心,为常数,单位为米)为半径的半圆形(如图)地上种植花草树木,其中弓形区域用于观赏样板地,区域用于种植花木出售,其余区域用于种植草皮出售.已知观赏样板地的成本是每平方米2元,花木的利润是每平方米8元,草皮的利润是每平方米3元.
(1)设, ,用表示弓形的面积;
(2)园林公司应该怎样规划这块土地,才能使总利润最大? 并求相对应的
(参考公式:扇形面积公式表示扇形的弧长)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号