为了弘扬爱国主义精神,某校组织了"共和国成就"知识竞赛,将成绩分为: (优秀)、 (良好)、 (合格)、 (不合格)四个等级.小李随机调查了部分同学的竞赛成绩,绘制了如图统计图.
(1)本次抽样调查的样本容量是 ,请补全条形统计图;
(2)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率;
(3)该校共有2000名学生,请你估计该校竞赛成绩"优秀"的学生人数.
(本小题满分6分)如图,已知点A、B、C、D在一条直线上,BF、CE相交于O,AE=DF,∠E=∠F,OB=OC.
(1)求证:△ACE≌△DBF;
(2)如果把△DBF沿AD折翻折使点F落在点G,连接BE和CG,求证:四边形BGCE是平行四边形.
(本小题满分10分)
(1) 解方程:=
+2;
(2) 解不等式组:.
(本小题满分8分)
(1) 计算:-2-(π-2015)0-
cos60°;
(2) 化简:.
如图,已知二次函数y=ax2+bx+8(a≠0)的图象与x轴交于点A(﹣2,0),B,与y轴交于点C,tan∠ABC=2.
(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得经过点P的直线PM垂直于直线CD,且与直线OP的夹角为75°?若存在,求出点P的坐标;若不存在,请说明理由;
(3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴向上平移,使抛物线与线段EF总有公共点.试探究:抛物线最多可以向上平移多少个单位长度?
如图1,在△ABC中,∠ACB=90°,经过点B的直线l(l不与直线AB重合)与直线BC的夹角的大小等于∠ABC,分别过点C、A作直线l的垂线,垂足分别为点D、E
(1)写出线段AE、CD之间的数量关系,并加以证明;
(2)当△ABC的位置旋转到图2或图3时,设直线CE、AB交于点F,且,CD=4,请你在图2和图3中任选一种情况,求此时BD的长.